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Read this Book! (Once It’s
Finished)

Warning

This is a work-in-progress document. Handle with care!

You should read this book (once it’s finished) if you’re interested in the
semantics of concurrent programs and want to understand …

• How behavioral process equivalences are treated uniformly in equiva-
lence spectra.

• Howmodal-logical and relational characterizations of behavioral equiv-
alences are actually just “shadows” of game characterizations.

• How energy games can be used to turn a family of qualitative equiva-
lence problems into one quantitative problems.

• How all behavioral equivalences can be decided at once.

TODO

(This is a space for TODOs that do not yet have a position in the text body.)



1 Introduction: What’s the
Difference?

Have you ever looked at two program models and wondered how equivalent
they are —or, conversely: how they can be distinguished?

I have run into this problem often, for instance when analyzing models
of distributed algorithms or when devising examples for teaching. But ob-
viously, the question already occurs every time one rewrites a program part
and hopes for it to still do its job.

Figure 1.1: The linear-time–branching-time
spectrum with silent moves as depicted in
Glabbeek (1993).

The first time I had to formally face the question was when working as a
student research assistant: I was tasked with implementing a translation from
the process algebra Timed CSP to Timed Automata.1 … How to tell whether

1 The aim was to bridge between the tools FDR2
and UPPAAL for Göthel’s dissertation (2012).
Previous work I was to base the translations
on had serious flaws: One approach introduced
spurious deadlocks to the model, the other was
unable to handle nesting of choices and parallel
composition. Clearly, we had to change the en-
coding!

the translation would properly honor the semantics of the two formalisms?
Did it translate CSP terms to automata with the same meaning? Even the def-
inition of the question is tricky, as there are different notions of what counts
as “same meaning” in the semantics of programs.

I then took my very first look into the seminal paper on the landscape
of process equivalences with internal behavior, the “Linear-time–branching-
time spectrum II” by van Glabbeek (1993). Its central figure, reproduced in
Figure 1.1, mesmerized me. But, how to use the spectrum to decide for a
given pair of processes which of the many equivalences apply, is far from
straightforward. Over the years, I have learned that others too have run into
this problem: For instance, Nestmann & Pierce (2000) thinking about pro-
cess algebra encodings and Bell (2013) verifying compiler optimizations. The
problem can be summarized as follows:

How does one conveniently decide for a pair of systems which
notions from a spectrum of behavioral equivalences equate the
two?

Above question will be the research question of this thesis. We2 want to enable 2 As you might have noticed, this text uses more
personal pronouns than is common in much of
computer science literature. Their meaning is
the same as in a lecture: “I” = “The author”; “You”
= “The audience”; “We” = “The asynchronous
collective of author and readers.”

future researchers to tap into the wisdom of the linear-time–branching-time
spectrum and to easily determine what equivalences fit their models.

1.1 Linear-Time–Branching-Time Spectroscopy

Van Glabbeek’s papers on comparative concurrency semantics (1990, 1993)
treat a zoo of distinct qualitative questions of the form “Are processes 𝑝 and 𝑞
equivalent with respect to notion 𝑁?”, where 𝑁 would for example be trace
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or bisimulation equivalence. He unveils an underlying structure where the
questions can easily be compared with respect to their distinctive power. This
is analogous to the spectrum of light where seemingly qualitative properties
(“The light is blue / green / red.”) happen to be quantitative (“The distribution
of wavelengths peaks at 460/550/630 nm.”).

For light (i.e. electromagnetic radiation), the mix of wavelengths can be
determined through a process called spectroscopy. So, we may ask:

If there exists a “linear-time–branching time spectrum,” does this
mean, there also is some kind of “linear-time–branching-time
spectroscopy”?

This thesis answers the question positively, which is the key step to tackle
our research question. One can compute what mix of (in-)distinguishabilities
exists between a pair of processes, and this places the two on the spectrum of
equivalences. We thus turn a set of qualitative equivalence problems into one
quantitative problem of how equivalent two systems are. As we will see, this
amounts to an abstract form of subtraction between programs, determining
what kinds of differences an outside examiner might observe.

1.2 This Thesis

The algorithm at the core of this thesis describes how to decide all behavioral
equivalences at once for varying spectra of equivalence using games that can
count to limit possible distinctions by attacker energy levels. More precisely, we
make the following contributions:

• Chapter 2 lays some foundations and makes precise how bisimilarity
games relate to grammars of distinguishing formulas of Hennessy–
Milner modal logic.

• Chapter 3 shows how to understand the strong linear-time–branching-
time spectrum quantitatively and formalizes the spectroscopy problem.

• Chapter 4 introduces the approach of characterizing equivalence spectra
through a class of energy games and how to decide such games.

• TODO Chapter 5 applies the approach to decide the whole strong spec-
trum through one game for linear-time–branching-time spectroscopy.

• TODO Chapter 6 adapt the game for the weak spectrum of equivalences
accounting for silent-steps.

• TODO Chapter 7 showcases implementations to conveniently perform
equivalence spectroscopies in web browsers and using GPU paralleliza-
tion.

1.3 Artifacts and Papers

This thesis ties together the work of several publications in a coherent presen-
tation. It is written to be understandable on its own. For details, we usually
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refer to the original publications or to other artifacts for implementation and
machine-checked proofs.

Publications. The following four publications (with me as main author) fuel
the following chapters:

• “Deciding All Behavioral Equivalences at Once: A Game for Linear-
Time–Branching-Time Spectroscopy” (LMCS 2022) introduces the
spectroscopy problem and the core idea to decide the whole strong
spectrum using games that search trees of possible distinguishing
formulas. (Conference version: TACAS 2021)

• “Process Equivalence Problems as Energy Games” (CAV 2023a) makes
a big technical leap by using energy games, removing the necessity for
explicit formula construction. (Tech report: arXiv 2023b)

• “Characterizing Contrasimilarity through Games, Modal Logic, and
Complexity” (Information & Computation 2024) closes gaps in the weak
spectrum of equivalences for games and their complexity and their link
to modal logics. (Isabelle/HOL theory: AFP 2023; Workshop version:
EXPRESS/SOS 2021)

• “One Energy Game for the Spectrum Between Branching Bisimilar-
ity and Weak Trace Semantics” (EXPRESS/SOS 2024) adapts the spec-
troscopy approach for the weak spectrum.

Prototype. The algorithms of this thesis have been validated through
a Scala prototype implementation. It can be tried out in the browser on
https://equiv.io. The source is available openly on https://github.com/
benkeks/equivalence-fiddle.

Isabelle formalization. Instead of swamping the document with technical
proofs, these are contained in machine-checkable Isabelle/HOL theories.

• Equivalence spectrum formalization contains proofs for the early
chapters: https://benkeks.github.io/ltbt-spectroscopy-isabelle/.

• Weak Equivalence Spectroscopy formalizes the core results of Chapter
6: https://equivio.github.io/silent-step-spectroscopy. The theory has
been developed together with TU Berlin students Lisa Annett Barthel,
Leonard Moritz Hübner, Caroline Lemke, Karl Parvis Philipp Mattes,
and Lenard Mollenkopf.

Student theses. Some parts of this thesis strongly rely on student work that I
have supervised, in particular, on the following theses:

• Trzeciakiewicz (2021): Linear-Time–Branching-Time Spectroscopy as an
Educational Web Browser Game provides a computer game version of
the spectroscopy procedure to be discussed in Subsection 7.3.1.

• Ozegowski (2023): Integration eines generischen Äquivalenzprüfers in
CAAL extends the Concurrency Workbench Aalborg Edition with a
spectroscopy feature, reported in Subsection 7.3.2.

https://equiv.io
https://github.com/benkeks/equivalence-fiddle
https://github.com/benkeks/equivalence-fiddle
https://benkeks.github.io/ltbt-spectroscopy-isabelle/
https://equivio.github.io/silent-step-spectroscopy
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• Mattes (2024): Measuring Expressive Power of HML Formulas in
Isabelle/HOL proves the approach to modal characterization of
Section 3.2.

• Vogel (2024): Accelerating Process Equivalence Energy Games using We-
bGPU, topic of Section 7.2, allows massive parallelization on the GPU
of key parts of our algorithm.

• Lemke (2024): A Formal Proof of Decidability of Multi-Weighted Declin-
ing Energy Games formalizes the fixedpoint algorithm of Section 4.3.

Other publications. Only indirectly connected to this dissertation project are
my prior publications in leading me to topic and techniques:

• Bisping et al. (2016, ITP): “Mechanical Verification of a Constructive
Proof for FLP.”

• Bisping & Nestmann (2019, TACAS): “Computing Coupled Similarity.”
• Bisping et al. (2020, Acta Informatica): “Coupled similarity: the first 32
years.”

Other Bachelor theses. During my dissertation project, I also supervised sev-
eral other Bachelor theses, many of which played important roles in shaping
the research. Although they do not appear directly on the following pages, I
want to acknowledge the students’ vital contribution to the research.

• Peacock (2020): Process Equivalences as a Video Game
• Lê (2020): Implementing Coupled Similarity as an Automated Checker for

mCRL2
• Wrusch (2020): Ein Computerspiel zum Erlernen von Verhaltensäquiv-

alenzen
• Reichert (2020): Visualising and Model Checking Counterfactuals
• Wittig (2020): Charting the Jungle of Process Calculi Encodings
• Bulik (2021): Statically Analysing Inter-Process Communication in Elixir

Programs
• Montanari (2021): Kontrasimulation als Spiel
• Pohlmann (2021): Reducing Strong Reactive Bisimilarity to Strong Bisim-

ilarity
• England (2021): HML Synthesis of Distinguished Processes
• Duong (2022): Developing an Educational Tool for Linear-Time–

Branching-Time Spectroscopy
• Alshukairi (2022): Automatisierte Reduktion von reaktiver zu starker

Bisimilarität
• Adler (2022): Simulation fehlertoleranter Konsensalgorithmen in Hash.ai
• Sandt (2022): A Video Game about Reactive Bisimilarity
• Lönne (2023): An Educational Computer Game about Counterfactual

Truth Conditions
• Hauschild (2023): Nonlinear Counterfactuals in Isabelle/HOL
• Stöcker (2024): Higher-Order Diadic µ-Calculus—An Efficient Framework

for Checking Process Equivalences?
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• Kurzan (2024): Implementierung eines Contrasimilarity-Checkers für
mCRL2



2 Preliminaries:
Communicating Systems
and Games

There is a virtually infinite supply of formalisms to model programs and com-
municating systems. They are accompanied by many notions for behavioral
equivalence and refinement to relate or distinguish their models.

This chapter takes a tour into this field. The tour is agnostic in building
on the most basic and versatile formalism of labeled transition systems and
on standard equivalences such as trace equivalence and bisimilarity. The ap-
proach is also opinionated in focussing on Robin Milner’s tradition of concur-
rency theory with a strong pull towards game characterizations. The very core
concepts are described in Section 2.1.

We will explore the trinity of relational, modal, and game-theoretic char-
acterizations of behavioral equivalences. Figure 2.1 shows the scaffold of this
section, instantiated to the classic notion of bisimilarity:

• Section 2.2 introduces (among other notions) bisimilarity through its
relational characterization in terms of symmetric simulation relations.

• Section 2.3 treats the dual connection of bisimilarity and the distin-
guishing powers of a modal logic, known as the Hennessy–Milner theo-
rem.

• Section 2.4 shows that both, the relations to validate bisimilarity and
the modal formulas to falsify it, appear as certificates of strategies in a
reachability game where an attacker tries to states apart and a defender
tries to prevent this.

Readers who are familiar with the contents of Figure 2.1 can mostly skim
through this chapter of preliminaries. The two core insights that this chapter
intends to seed for coming chapters are:

Idea 1: It’s all a game!

Equivalence games are a most versatile way to handle behavioral equiv-
alences and obtain decision procedures. TheHennessy–Milner theorem
appears as a shadow of the determinacy of the bisimulation reachability
game.
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𝑝 ∼B 𝑞
𝑝 and 𝑞 are bisimilar

𝑝 ≁B 𝑞
𝑝 and 𝑞 are not bisimilar

∶⟺

(Def 2.7)

⟺

There is bisimulation ℛ
such that (𝑝, 𝑞) ∈ ℛ

Some 𝜑 ∈ HML
distinguishes 𝑝 from 𝑞

⟺Stirling’s
characterization

⟺
Section 2.4.4

Defender wins bisimulation
game from [𝑝, 𝑞]

Attacker wins bisimulation
game from [𝑝, 𝑞]

XOR
(Def 2.7)

XOR
Hennessy–Milner

theorem

XOR
Determinacy
of games

Section 2.2

Section 2.3

Section 2.4

Figure 2.1: Core-correlations for bisimilarity between relational definition, modal distinguishability, and game.

Idea 2: Modal first!

Modal characterizations allow a uniform handling of the hierarchy of
equivalences. Productions in grammars of potential distinguishing for-
mulas translate to game rules for equivalence games.

Both pointsmight seem non-standard to thosewho aremore used to relational
or denotational definitions of behavioral equivalences. To provide them with
a bridge, we will start with relational and denotational definitions—but once
we have crossed the bridge, we will not go back.

2.1 Behavior of Programs

Every computer scientist has some model in their head of what it is that their
algorithms and programs are doing. Usually these models are wrong,3 espe- 3 But some are useful, as the saying goes.
cially, once concurrency enters the picture. The area of formal methods tries
to makemodels sufficiently precise that one at least can say what went wrong.

2.1.1 Labeled Transition Systems

Labeled transition systems are the standard formalism to discretely express
the state space of programs, algorithms, and more. One can think of them
as nondeterministic finite automata where the finiteness constraint has been
lifted.

Definition 2.1 (Transition Systems). A labeled transition system (LTS) 𝒮 =
(𝒫,Act, −→) consists of

• 𝒫, a set of states,
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• Act, a set of actions, and
• −→ ⊆ 𝒫 × Act × 𝒫, a transition relation.4 4 locale Labeled_Transition_Systems.lts

We write Der(𝑝, 𝛼) for the set of derivative states {𝑝′ ∣ 𝑝 𝛼−→ 𝑝′}, and Ini(𝑝)
for the set of enabled actions {𝛼 ∣ ∃𝑝′. 𝑝 𝛼−→ 𝑝′}.

There is a canonical example used to discuss equivalences within transition
systems, which we want to draw from. We will take the formulation that
Henzinger used at CAV’23 as seen in Figure 2.2.

Figure 2.2: Tom Henzinger employing Exam-
ple 2.1 during CAV’23.

Example 2.1 (A Classic Example). Consider the transition system
𝒮PQ = ({P, pa, pb, p1, p2, Q, qab, q1, q2}, {a, b, 𝜏}, ⋅−→PQ) given by the
following graph:

P

pa pb

p1 p2

𝜏 𝜏

a b

Q

qab

q1 q2

𝜏

a b

Figure 2.3: Example system 𝒮PQ.

The program described by the transitions from P choses non-deterministically
during a 𝜏 -step between two options and then offers only either a or b. The
program Q on the other hand performs a 𝜏 -step and then offers the choice
between options a and b to the environment.

There are two things one might wonder about Example 2.1:

1. Should one care about non-determinism in programs? Subsection 2.1.2
shows how non-determinism arises naturally in concurrent programs.

2. Should one consider P and Q equivalent? This heavily depends. Sec-
tion 2.2 will introduce a notion of equivalence under which the two are
equivalent and one under which they differ.

Remark 2.1 (A Note on 𝜏 ). The action 𝜏 (the greek letter “tau”) will in later
chapters stand for internal behavior and receive special treatment. For the
scope of this and the following three chapters, 𝜏 is an action like every other.

Generally, this thesis aims to be consistent with notation and naming in
surrounding literature. Where there are different options, we usually prefer
the less-greek one. Also, we will usually write literals and constant names in
sans-serif and variables in italics. For the internal action, the whole field has
converged to 𝜏 in italics, however—so, we will run with this.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Labeled_Transition_Systems.html#Labeled_Transition_Systems.lts%7Clocale
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2.1.2 Calculus of Communicating Systems

To talk about programs in this thesis, we use Milner’s (1989) Calculus of Com-
municating Systems (CCS), which—together with other great contributions—
earned him the Turing award. It is a tiny concurrent programming language
that fits in your pocket, and can be properly described mathematically!

Definition 2.2 (Calculus of Communicating Systems). Let 𝒜 be a set of chan-
nel names, and 𝒳 a set of process names. Then, CCS processes, communicat-
ing via actions ActCCS ≔ 𝒜 ∪ {𝛼 ∣ 𝛼 ∈ 𝒜} ∪ {𝜏}, are given by the following
grammar:

𝑃 ∶∶= 𝛼.𝑃 with 𝛼 ∈ 𝒜 “input action prefix”
𝛼.𝑃 with 𝛼 ∈ 𝒜 “output action prefix”
𝜏 .𝑃 “internal action”
0 “null process”
𝑋 with 𝑋 ∈ 𝒳 “recursion”
𝑃 + 𝑃 “choice”
𝑃 ∣ 𝑃 “parallel composition”
𝑃 \ 𝐴 with 𝐴 ⊆ 𝒜 “restriction”

We call pairs of actions 𝛼 and 𝛼 coactions, and work with the aliasing 𝛼 = 𝛼.
The intuition is that an action 𝛼 represents receiving and 𝛼 expresses send-
ing in communication. A pair of action and coaction can “react” in a com-
munication situation and only become internal activity 𝜏 in the view of the
environment.

Each sub-process tree must end in a 0-process or recursion. For brevity,
we usually drop a final 0 when writing terms, e.g., just writing ac for ac.0.

We place parenthesis, (…), in terms where the syntax trees are otherwise
ambiguous, but understand the choice operator + and the parallel operator ∣
to be associative.

Example 2.2 (Concurrent Philosophers). Following tradition, we will express
our examples in terms of philosophers who need forks to eat spaghetti.5 So, 5 Of course, you can just as well read the exam-

ples to be about computer programs that race for
resources.

consider two philosophers PA and PB who want to grab a resource fork mod-
eled as an action in order to eat where we express PA eating with action a and
PB eating with b. The philosopher processes read:

PA ≔ fork.a.0

PB ≔ fork.b.0

An LTS representation of PA’s behavior can be seen in the margin. Process P
captures the whole scenario where the two philosophers compete for the fork
using communication:

P ≔ (fork.0 ∣ PA ∣ PB) \ {fork}
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The restriction … \ {fork} expresses that the fork-channel can only be used
for communication within the system.

As the fork-action can be consumed by just one of the two philosophers,
process P expresses exactly the program behavior seen in state P of Exam-
ple 2.1.

The formal relationship between process terms and their LTS semantics is
given by the following definition.

Definition 2.3 (CCS Semantics). Given an assignment of names to processes,
𝒱∶ 𝒳 → CCS, the operational semantics ⋅−→CCS ⊆ CCS × ActCCS × CCS is
defined inductively by the rules:

𝛼.𝑃 𝛼−→CCS 𝑃
𝑃 𝛼−→CCS 𝑃 ′ 𝒱(𝑋) = 𝑃

𝑋 𝛼−→CCS 𝑃 ′

𝑃1
𝛼−→CCS 𝑃 ′

1
𝑃1 + 𝑃2

𝛼−→CCS 𝑃 ′
1

𝑃2
𝛼−→CCS 𝑃 ′

2
𝑃1 + 𝑃2

𝛼−→CCS 𝑃 ′
2

𝑃1
𝛼−→CCS 𝑃 ′

1
𝑃1 ∣ 𝑃2

𝛼−→CCS 𝑃 ′
1 ∣ 𝑃2

𝑃2
𝛼−→CCS 𝑃 ′

2
𝑃1 ∣ 𝑃2

𝛼−→CCS 𝑃1 ∣ 𝑃 ′
2

𝑃1
𝛼−→CCS 𝑃 ′

1 𝑃2
𝛼−→CCS 𝑃 ′

2
𝑃1 ∣ 𝑃2

𝜏−→CCS 𝑃 ′
1 ∣ 𝑃 ′

2

𝑃 𝛼−→CCS 𝑃 ′ 𝛼, 𝛼 ∉ 𝐴
𝑃 \ 𝐴 𝛼−→CCS 𝑃 ′ \ 𝐴

A process 𝑃 ∈ CCS now denotes a position in the transition system
(CCS, ActCCS, −→CCS) defined through Definition 2.2.

Feel free to go ahead an check that the transitions of Example 2.1 indeedmatch
those that Definition 2.3 prescribes for P of Example 2.2! (For readability,
Example 2.1, has shorter state names, however.) For instance, the transition
P 𝜏−→ pa of Example 2.1 would be justified as follows:

fork fork−−→CCS 0

fork.a fork−−→CCS a 𝒱(PA) = fork.a
PA

fork−−→CCS a
PA ∣ PB

fork−−→CCS a ∣ PB
fork ∣ PA ∣ PB

𝜏−→CCS 0 ∣ a ∣ PB 𝜏 ∉ {fork}
(fork ∣ PA ∣ PB) \ {fork} 𝜏−→CCS (0 ∣ a ∣ PB) \ {fork} 𝒱(P) = (fork ∣ PA ∣ PB) \ {fork}

P 𝜏−→CCS (0 ∣ a ∣ PB) \ {fork}

Non-determinism like in P of Example 2.1 can be understood as a natural phe-
nomenon in models with concurrency. The model leaves unspecified which
of two processes will consume an internal resource and, to the outsider, it is
transparent which one took the resource until they communicate. There are
other ways how non-determinism plays a crucial role in models, for instance,
as consequence of abstraction or parts that are left open in specifications.
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The second process Q of Example 2.1 can be understood as a deterministic
sibling of P.

Example 2.3 (Deterministic Philosophers). A process matching the transi-
tions from Q in Example 2.1 would be the following, where the philosophers
take the fork as a team and then let the environment choose who of them eats:

Q ≔ (fork ∣ fork.(a + b)) \ {fork}.

But are P and Q equivalent?

2.2 Behavioral Equivalences

A behavioral equivalence formally defines when to consider two processes
(or states, or programs) as equivalent. Clearly, there might be different ways
of choosing such a notion of equivalence. Also, sometimes we are interested
in a behavioral preorder, for instance, as a way of saying that a program does
“less than” what some specification allows.

This section will quickly introduce the most common representatives of
behavioral equivalences: Trace equivalence (and preorder), simulation equiv-
alence (and preorder), and bisimilarity. We will then observe that the notions
themselves can be compared in a hierarchy of equivalences.

2.2.1 Trace Equivalence

Every computer science curriculum features automata and their languages
sometime at the beginning. Accordingly, comparing two programs in terms
of the sequences of input/ouput events they might expose, referred to as their
traces, is a natural starting point to talk about behavioral equivalences.

Definition 2.4 (Traces). The set of traces of a state Traces(𝑝) is recursively
defined as

• () ∈ Traces(𝑝),6 6 We denote the empty word by ().
• 𝛼 ⋅ 𝑤⃗ ∈ Traces(𝑝) if there is 𝑝′ with 𝑝 𝛼−→ 𝑝′ and 𝑤⃗ ∈ Traces(𝑝′).7 7 abbreviation Labeled_Transition_Systems.lts

.traces
Definition 2.5 (Trace Equivalence). Two states 𝑝 and 𝑞 are considered trace-
equivalent, written 𝑝 ∼T 𝑞, if Traces(𝑝) = Traces(𝑞).8 8 abbreviation Strong_Equivalences.lts.trace

_equivalentStates are trace-preordered, 𝑝 ⪯T 𝑞, if Traces(𝑝) ⊆ Traces(𝑞).9
9 definition Strong_Equivalences.lts.trace
_preorderedExample 2.4. The traces for the processes of Example 2.1 would be

Traces(P) = {(), 𝜏 , 𝜏a, 𝜏b} = Traces(Q). Consequently, P and Q are
trace-equivalent, P ∼T Q.

As Traces(pa) = {(), a} ⊆ {(), a, b} = Traces(qab), pa is trace-
preordered to qab, pa ⪯T qab. This ordering is strict, that is, qab ⪯̸T pa, due to
b ∈ Traces(qab) but b ∉ Traces(pa). We could say that trace b constitutes a
difference between qab and pa.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Labeled_Transition_Systems.html#Labeled_Transition_Systems.lts.traces%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Labeled_Transition_Systems.html#Labeled_Transition_Systems.lts.traces%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_equivalent%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_equivalent%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_preordered%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_preordered%7Cconst
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Proposition 2.1. The trace preorder ⪯T is indeed a preorder (i.e., transitive and
reflexive)10 and trace equivalence ∼T is indeed an equivalence relation (i.e., tran- 10 lemma Strong_Equivalences.lts.trace

_preorder_transitivesitive, reflexive, and moreover symmetric).11
11 lemma Strong_Equivalences.lts.trace
_equivalence_equivTrace equivalence and preorder assign programs straightforward denotational

semantics: The sets of traces they might expose. For many languages, these
mathematical objects can be constructed directly from the expressions of the
language. With the idea that the program text “denotes” its possible execu-
tions, the set of traces is called a “denotation” in this context. CCS, as we
use it, follows another approach to semantics, namely the one of “operational
semantics,” where the meaning of a program is in how it might execute.

There are several reasons why computer scientist did content semselves
with trace equivalence when studying interactive systems. The core argu-
ment is that, in this context, one usually does not want to consider processes
like P and Q to be equivalent: The two might interact differently with an en-
vironment. For instance, assume there is a user that wants to communicate
(⋯ ∣ a.success.0)\{a}. In interactions with Q, they will always reach success;
with P, there is a possibility of ending up deadlocked in parallel with pb, never
achieving success.

2.2.2 Simulation and Bisimulation

The other big approach to behavioral equivalence of programs is the one of
relating parts of their state spaces to one-another. The idea here is to iden-
tify which states of one program can be used to simulate the behavior of the
another.

Definition 2.6 (Simulation). A relation on states, ℛ ⊆ 𝒫 × 𝒫, is called a
simulation if, for each (𝑝, 𝑞) ∈ ℛ and 𝛼 ∈ Act with 𝑝 𝑎−→ 𝑝′ there is a 𝑞′ with
𝑞 𝛼−→ 𝑞′ and (𝑝′, 𝑞′) ∈ ℛ.12 12 definition Strong_Equivalences.lts

.simulation
Definition 2.7 ((Bi-)similarity). Simulation preorder, simulation equivalence
and bisimilarity are defined as follows:

• 𝑝 is simulated by 𝑞, 𝑝 ⪯S 𝑞, iff there is a simulation ℛ with (𝑝, 𝑞) ∈ ℛ.13 13 definition Strong_Equivalences.lts.simulated
_by• 𝑝 is similar to 𝑞, 𝑝 ∼S 𝑞, iff 𝑝 ⪯S 𝑞 and 𝑞 ⪯S 𝑝.14
14 abbreviation Strong_Equivalences.lts.similar• 𝑝 is bisimilar to 𝑞, 𝑝 ∼B 𝑞, iff there is a symmetric simulation ℛ (i.e. ℛ =

ℛ−1) with (𝑝, 𝑞) ∈ ℛ.15 15 definition Strong_Equivalences.lts.bisimilar

We also call a symmetric simulation bisimulation for short.16 Canceled sym- 16 Other authors use a weaker definition,
namely, that ℛ is a bisimulation if ℛ and ℛ−1

are simulations. Both definitions lead to the
characterization of the same notion of bisimilar-
ity.

bols of relations refer to their negations, for instance, 𝑝 ≁S 𝑞 iff there is no
simulation ℛ with (𝑝, 𝑞) ∈ ℛ.

Example 2.5. The following relations are simulations on the LTS of Exam-
ple 2.1:

• the empty relation ℛ∅ ≔ ∅;

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_preorder_transitive%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_preorder_transitive%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_equivalence_equiv%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_equivalence_equiv%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulation%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulation%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulated_by%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulated_by%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.similar%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.bisimilar%7Cconst
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• the identity relation ℛid ≔ id{P,pa,pb,p1,p2,Q,qab,q1,q2} = {(P, P), (pa, pa),
(pb, pb), (p1, p1), (p2, p2), (Q, Q), (qab, qab), (q1, q1), (q2, q2)};

• the universal relation between all final states ℛfin ≔ {p1, p2, q1, q2}2,
• more generally, the relation from final states to all other states: ℛup ≔

{p1, p2, q1, q2} × 𝒫;
• aminimal simulation forP andQ: ℛPQ ≔ {(P, Q), (pa, qab), (pb, qab), (p1, q1), (p2, q2)};
• and the combination of the above ℛmax ≔ ℛsim ∪ ℛid ∪ ℛup.

The simulation ℛPQ shows that P ⪯S Q.
However, there is no simulation that preorders Q to P, as there is no way

to simulate the transition Q 𝜏−→ qab from P for lack of a successor that allows
a and b as does qab. (In Section 2.3, we will discuss how to capture such
differences more formally.)

Thus, Q ⪯̸S P, and P ≁S Q. Moreover, there cannot be a symmetric
simulation, P ≁B Q.

Proposition 2.2. The simulation preorder ⪯S is indeed a preorder17, and ∼S and 17 lemma Strong_Equivalences.lts.simulation
_preorder_transitive∼B are equivalences.18
18 lemma Strong_Equivalences.lts.bisimilarity
_equiv2.2.3 The Hierarchy of Equivalences

Bisimilarity, similarity and trace equivalence form a small hierarchy of equiv-
alences in the sense that they imply one-another in one direction, but not in
the other. Let us quickly make this formal:

Figure 2.4: Core hierarchy of equivalences.

Lemma 2.1. The relation ∼B is itself a symmetric simulation.19

19 lemma Strong_Equivalences.lts.bisim_bisim

Corollary 2.1. If 𝑝 ∼B 𝑞, then 𝑝 ∼S 𝑞.20

20 lemma Strong_Equivalences.lts.bisim_bisim

Lemma 2.2. If 𝑝 ⪯S 𝑞, then 𝑝 ⪯T 𝑞.21 (Consequently, 𝑝 ∼S 𝑞 also implies

21 lemma Strong_Equivalences.lts.sim_implies
_trace_preord

𝑝 ∼T 𝑞.22)

22 lemma Strong_Equivalences.lts.sim_eq
_implies_trace_eq

We also have seen with example Example 2.5 that this hierarchy is strict be-
tween trace and simulation preorder in the sense that there exist 𝑝, 𝑞 with
𝑝 ⪯T 𝑞 but not 𝑝 ⪯S 𝑞. The hierarchy also is strict between similarity and
bisimilarity as the following example shows.

Example 2.6 (Trolled philosophers). Let us extend Q of Example 2.3 to include
a troll process that might consume the fork and then do nothing:

T ≔ (fork ∣ fork ∣ fork.(a + b)) \ {fork}.

This adds another deadlock state to the transition system, seen in Figure 2.5.

Figure 2.5: Example with new deadlock q3.

To similarity, this change is invisible, that isQ ∼S T. (Reason: The relation
{(Q, T), (T, Q)} ∪ id{qab,q1,q2,q3} is a simulation.)

However, to bisimilarity, T 𝜏−→ q3 constitutes a difference. There cannot
be a symmetric simulation handling this transition as Q has no deadlocked
successors. Thus Q ≁B T.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulation_preorder_transitive%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulation_preorder_transitive%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.bisimilarity_equiv%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.bisimilarity_equiv%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.bisim_bisim%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.bisim_bisim%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.sim_implies_trace_preord%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.sim_implies_trace_preord%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.sim_eq_implies_trace_eq%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.sim_eq_implies_trace_eq%7Cfact
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The equivalences we have been discussed so far could also be understood as
abstractions of an even finer equivalence, namely graph isomorphism:

Definition 2.8 (Graph Isomorphism). A bijective function 𝑓 ∶ 𝒫 → 𝒫 is called
a graph isomorphism on a transition system if, for all 𝑝, 𝑝′, 𝛼, the transition
𝑝 𝛼−→ 𝑝′ exists if and only if the transition 𝑓(𝑝) 𝛼−→ 𝑓(𝑝′) exists.23 23 definition Strong_Equivalences.lts

.isomorphismTwo states 𝑝 and 𝑞 are considered graph-isomorphism-equivalent, 𝑝 ∼ISO 𝑞,
iff there is a graph isomorphism 𝑓 with 𝑓(𝑝) = 𝑞.24 24 definition Strong_Equivalences.lts.is

_isomorphic_to
Example 2.7. Consider the transition system in Figure 2.6. peven ∼ISO podd
because 𝑓 ≔ {peven ↦ podd, podd ↦ peven} is a graph isomorphism.

Figure 2.6: Transition system with an isomor-
phic cycle.

Lemma 2.3. The relation ∼ISO is itself a symmetric simulation and thus 𝑝 ∼ISO 𝑞
implies 𝑝 ∼B 𝑞.25

25 lemma Strong_Equivalences.lts.iso_implies
_bisim

Once again, the hierarchy is strict because of bisimilarity being less restricted
in the matching of equivalent states.

Example 2.8. Consider the processes P1 ≔ (fork ∣ fork) \ {fork} and P2 ≔
(fork ∣ fork ∣ fork) \ {fork}. P1 can transition to (0 ∣ 0) \ {fork}, while P2
has two options, namely (0 ∣ 0 ∣ fork) \ {fork} and (0 ∣ fork ∣ 0) \ {fork}. All
three reachable processes are deadlocks and thus isomorphic. But P1 ≁ISO P2
because no bijection can connect the one successor of P1 and the two of P2.
However, P1 ∼B P2, as bisimilarity is more relaxed.

2.2.4 Congruences

One of the prime quality criteria for behavioral equivalences is whether they
form congruences with respect to fitting semantics or other important trans-
formations. A congruence relates mathematical objects that can stand in for
one-another in certain contexts, which, for instance, allows term rewriting.
The concept is closely linked to another core notion of mathematics: mono-
tonicity.

Definition 2.9 (Monotonicity and Congruence). An 𝑛-ary function 𝑓 ∶ 𝐵1 ×
⋯ × 𝐵𝑛 → 𝐶 is called monotonic with respect to a family of partial orders
(𝐵𝑘, ≤𝑘) and (𝐶, ≤) iff, for all 𝑏 ∈ 𝐵1 × ⋯ × 𝐵𝑛 and 𝑏′ ∈ 𝐵1 × ⋯ × 𝐵𝑛,
it is the case that 𝑏𝑘 ≤ 𝑏′

𝑘 for all 𝑘 ≤ 𝑛 implies that 𝑓(𝑏) ≤ 𝑓(𝑏′). We will
usually encounter settings where all components use the same order (𝐵1, ≤1
) = ⋯ = (𝐵𝑛, ≤𝑛) = (𝐶, ≤)

The relation ≤ is then referred to as a precongruence for 𝑓 . If ≤ moreover
is symmetric (and thus an equivalence relation), then ≤ is called a congruence
for 𝑓 .

Example 2.9 (Parity as Congruence). As a standard example for a congruence,
consider the equivalence relation of equally odd numbers

∼odd ∶= {(𝑚, 𝑛) ∈ ℕ × ℕ ∣ 𝑚 mod 2 = 𝑛 mod 2}.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.isomorphism%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.isomorphism%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.is_isomorphic_to%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.is_isomorphic_to%7Cconst
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.iso_implies_bisim%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.iso_implies_bisim%7Cfact
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For instance, 1 ∼odd 3 and 0 ∼odd 42, but not 42 ∼odd 23.
∼odd is a congruence for addition and multiplication. For instance, the

sum of two odd numberswill always be even; the product of two odd numbers,
will always be odd.

But ∼odd is no congruence for integer division. For instance, 2 ∼odd 4,
but 2/2 = 1 ≁odd 2 = 4/2.

Lemma 2.4. The operators of CCS (Definition 2.2) are congruences for trace
equivalence and bisimilarity on the CCS transition system (Definition 2.3).

Proof. This is a well-established fact. TODO: Citation!
As an example, let us prove the congruence property for choice, +, on

bisimilarity, ∼B. For any CCS context, we assume 𝑃 ∼B 𝑅 and 𝑄 ∼B 𝑇 .
We have to show that 𝑃 + 𝑄 ∼B 𝑅 + 𝑇 , that is due to symmetry, that for
any 𝛼 with 𝑃 + 𝑄 𝛼−→CCS PQ′ there is RT′ such that 𝑅 + 𝑇 𝛼−→CCS RT′ and
PQ′ ∼B RT′. By the semantics of CCS, the first step must be either due to
𝑃 𝛼−→CCS PQ′ or, analogously, 𝑄 𝛼−→CCS PQ′. Without loss of generality, we
only consider 𝑃 𝛼−→CCS PQ′. Due to 𝑃 ∼B 𝑅, this step implies some 𝑅′ with
𝑅 𝛼−→CCS 𝑅′ and PQ′ ∼B 𝑅′. As 𝑅 + 𝑇 𝛼−→CCS 𝑅′, we can take this 𝑅′ to
prove our goal.

2.3 Modal Logic

Modal logics are logics in which one can formalize how facts in one possible
world relate to other possible worlds. In the computer science interpretation,
the possible worlds are program states, and typical statements have the form:
“If 𝑋 happens during the execution, then 𝑌 will happen in the next step.”

We care about modal logics as they too can be used to characterize be-
havioral equivalences. In this section, we will show how this characterization
works and argue that, for our purposes of comparative semantics, modal char-
acterizations are a superb medium.

2.3.1 Hennessy–Milner Logic to Express Observations

Hennessy & Milner (1980) introduce the modal logic that is now commonly
called Hennessy–Milner logic as a “little language for talking about programs.”
The idea is that HML formulas express “experiments” or “tests” that an ob-
server performs interacting with a program.

Definition 2.10 (Hennessy–Milner Logic). Formulas ofHennessy–Milner logic
HML are given by the grammar:26 26 datatype Hennessy_Milner_Logic.hml

_formula
𝜑 ∶∶= ⟨𝛼⟩𝜑 with 𝛼 ∈ Act “observation”

∣ ⋀𝑖∈𝐼 𝜑𝑖 with index set 𝐼 “conjunction”
∣ ¬𝜑 “negation”

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Hennessy_Milner_Logic.html#Hennessy_Milner_Logic.hml_formula%7Ctype
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Hennessy_Milner_Logic.html#Hennessy_Milner_Logic.hml_formula%7Ctype


2.3. Modal Logic 16

We also write conjunctions as sets ⋀{𝜑1, 𝜑2…}. The empty conjunction ⋀ ∅
is denoted by ⊤ and serves as the nil-element of HML syntax trees. We also
usually omit them when writing down formulas, e.g., shortening ⟨a⟩⟨b⟩⊤ to
⟨a⟩⟨b⟩.

The intuition behind HML is that it describes what sequences of behavior
one may or may not observe of a system. Observations ⟨𝛼⟩… are used to build
up possible action sequences; conjunctions ⋀{…} capture branching points
in decision trees; and negations ¬… describe impossibilities.

Definition 2.11 (HML semantics). The semantics of HML J⋅K ∶ HML → 2𝒫 is
defined recursively by:27 27 primrec Hennessy_Milner_Logic.lts.satisfies

J⟨𝛼⟩𝜑K ≔ {𝑝 ∣ ∃𝑝′ ∈ J𝜑K. 𝑝 𝛼−→ 𝑝′}J⋀𝑖∈𝐼 𝜑𝑖K ≔ ⋂𝑖∈𝐼J𝜑𝑖KJ¬𝜑K ≔ 𝒫 \ J𝜑K
Example 2.10. Let us consider some observations on the system of Exam-
ple 2.1.

• J⟨𝜏⟩⟨a⟩K = {P, Q} as both, P and Q, expose the trace 𝜏a,
• Q ∈ J⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩}K, but P ∉ J⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩}K.
• P ∈ J⟨𝜏⟩¬⟨a⟩K, but Q ∉ J⟨𝜏⟩¬⟨a⟩K.

2.3.2 Characterizing Bisimilarity via HML

We can now add the middle layer of our overview graphic in Figure 2.1: That
two states are bisimilar precisely if they cannot be told apart using HML for-
mulas.

Definition 2.12 (Distinctions and Equivalences). We say that formula 𝜑 ∈
HML distinguishes state 𝑝 from state 𝑞 if 𝑝 ∈ J𝜑K but 𝑞 ∉ J𝜑K.28 28 abbreviation LTS_Semantics.lts.distinguishes

We say a sublogic 𝒪 ⊆ HML preorders state 𝑝 to 𝑞, 𝑝 ⪯𝒪 𝑞, if no 𝜑 ∈ 𝒪 is
distinguishing 𝑝 from 𝑞.29 If the preordering goes in both directions, we say 29 definition LTS_Semantics.lts.preordered
that 𝑝 and 𝑞 are equivalent with respect to sublogic 𝒪, written 𝑝 ∼𝒪 𝑞.30 30 definition LTS_Semantics.lts.equivalent

By this account, ⟨𝜏⟩¬⟨a⟩ of Example 2.10 distinguishesP fromQ. On the other
hand, ⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩} distinguishes Q from P. (The direction matters!) For
instance, the sublogic {⟨𝜏⟩⟨a⟩, ⟨𝜏⟩⟨b⟩} preorders P and Q in both directions;
so the two states are equivalent with respect to this logic.

Proposition 2.3. Consider an arbitrary HML sublogic 𝒪 ⊆ HML. Then, ⪯𝒪 is
a preorder, and ∼𝒪 an equivalence relation.31 31 lemma LTS_Semantics.lts.equivalent_equiv

Lemma 2.5. Hennessy–Milner logic equivalence ∼HML is a simulation rela-
tion.32 32 lemma HML_Spectrum.lts.hml_equiv_sim

Proof. Assume it were not. Then there would need to be 𝑝 ∼HML 𝑞 with step
𝑝 𝛼−→ 𝑝′, and no 𝑞′ such that 𝑞 𝛼−→ 𝑞′ and 𝑝′ ∼HML 𝑞′. So there would need
to be a distinguishing formula 𝜑𝑞′ for each 𝑞′ that 𝑞 can reach by an 𝛼-step.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Hennessy_Milner_Logic.html#Hennessy_Milner_Logic.lts.satisfies%7Cconst
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https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/LTS_Semantics.html#LTS_Semantics.lts.preordered%7Cconst
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Consider the formula 𝜑𝛼 ≔ ⟨𝛼⟩ ⋀𝑞′∈Der(𝑞,𝛼) 𝜑𝑞′ . It must be true for 𝑝 and
false for 𝑞, contradicting 𝑝 ∼HML 𝑞.

Lemma 2.6 (HML Bisimulation Invariance). If 𝑝 ∈ J𝜑K and 𝑝 ∼B 𝑞 then 𝑞 ∈J𝜑K.33 33 lemma HML_Spectrum.lts.hml_bisim
_invariant

Proof. Induct over the structure of 𝜑 with arbitrary 𝑝 and 𝑞.

• Case 𝑝 ∈ J⟨𝛼⟩𝜑K. Thus there is 𝑝′ ∈ J𝜑K with 𝑝 𝛼−→ 𝑝′. Because ∼B
is a simulation according to Lemma 2.1, this implies 𝑞′ with 𝑝′ ∼B 𝑞′.
The induction hypothesis makes 𝑝′ ∈ J𝜑K entail 𝑞′ ∈ J𝜑K and thus
𝑞 ∈ J⟨𝛼⟩𝜑K.

• Case 𝑝 ∈ J⋀𝑖∈𝐼 𝜑𝑖K. The induction hypothesis on the 𝜑𝑖 directly leads
to 𝑞 ∈ J⋀𝑖∈𝐼 𝜑𝑖K.

• Case 𝑝 ∈ J¬𝜑K. Symmetry of ∼B according to Proposition 2.2, implies
𝑞 ∼B 𝑝. By induction hypothesis, 𝑞 ∈ J𝜑K implies 𝑝 ∈ J𝜑K. So, using
contraposition, the case implies 𝑞 ∈ J¬𝜑K.

Combining the bisimulation invariance for one direction and that ∼HML is a
symmetric simulation (Proposition 2.3 and Lemma 2.5) for the other, we obtain
that HML precisely characterizes bisimilarity:

Theorem 2.1 (Hennessy–MilnerTheorem). Bisimilarity and HML equivalence
coincide, that is, 𝑝 ∼B 𝑞 precisely if 𝑝 ∼HML 𝑞.34 34 theorem HML_Spectrum.lts.Hennessy

_Milner_theorem
Remark 2.2. In the standard presentation of the theorem, image finiteness of
the transition system is assumed. This means that Der(𝑝, 𝛼) is finite for every
𝑝 ∈ 𝒫. The amount of outgoing transitions matters precisely in the construc-
tion of 𝜑𝛼 in the proof of Lemma 2.5. But as our definition of HML (Defini-
tion 2.10) allows infinite conjunctions ⋀𝑖∈𝐼 …, we do not need an assumption
here. The implicit assumption is that the cardinality of index sets 𝐼 can match
that of Der(𝑝, 𝛼). The original proof by Hennessy &Milner (1980) uses binary
conjunction (𝜑1 ∧ 𝜑2) and thus can only express finitary conjunctions.

2.3.3 The Perks of Modal Characterizations

There is merit in also characterizing other equivalences through sublogics
𝒪 ⊆ HML. There are three immediate big advantages to modal character-
ization:

Modal characterizations lead to proper preorders and equivalences by design
due to Proposition 2.3. That is, if a behavioral preorder (or equivalence) is
defined through modal logics, there is no need of proving transitivity and
reflexivity (and symmetry).

Secondly, modal characterizations can directly unveil the hierarchy be-
tween preorders, if defined cleverly, because of the following property.

Proposition 2.4. If 𝒪 ⊆ 𝒪′ then 𝑝 ⪯𝒪′ 𝑞 implies 𝑝 ⪯𝒪 𝑞 for all 𝑝, 𝑞.35 35 lemma LTS_Semantics.lts_semantics
.preorder_contraposition
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Pay attention to the opposing directions of ⊆ and implication, here!
Thirdly, as a corollary of Proposition 2.4, modal characterizations ensure

equivalences to be abstractions of bisimilarity, which is a sensible base notion
of equivalence.36 36 Among other things, bisimilarity checking

has a better time complexity than other notions
as will be discussed in Subsection 3.3.3.

In Chapter 3, wewill discuss how the hierarchy of behavioral equivalences
can be understood nicely and uniformly if viewed through the modal lense.

2.3.4 Expressiveness and Distinctiveness

Proposition 2.4 actually is a weak version of another proposition about dis-
tinctiveness of logics.

Definition 2.13. We say that an Act-observation language 𝒪 is less or equal in
expressiveness to another 𝒪′ iff, for any Act-transition system, for each 𝜑 ∈ 𝒪,
there is 𝜑′ ∈ 𝒪′ such that J𝜑K = J𝜑′K. (The definition can also be read
with regards to a fixed transition system 𝒮.)37 If the inclusion holds in both 37 definition LTS_Semantics.lts_semantics.leq

_expressivedirections, 𝒪 and 𝒪′ are equally expressive.

Definition 2.14. We say that an Act-observation language 𝒪 is less or equal
in distinctiveness to another 𝒪′ iff, for any Act-transition system and states
𝑝 and 𝑞, for each 𝜑 ∈ 𝒪 that distinguishes 𝑝 from 𝑞, there is 𝜑′ ∈ 𝒪′ that
distinguishes 𝑝 from 𝑞.38 If the inclusion holds in both directions, 𝒪 and 𝒪′ 38 definition LTS_Semantics.lts_semantics.leq

_distinctiveare equally distinctive.

Lemma 2.7. Subset relationship entails expressiveness entails distinctiveness.

• If 𝒪 ⊆ 𝒪′, then 𝒪 is less or equal in expressiveness to 𝒪′.39 39 lemma LTS_Semantics.lts_semantics.subset
_expressiveness• If 𝒪 is less or equal in expressiveness to 𝒪′, then 𝒪 is less or equal in

distinctiveness to 𝒪′.40 40 lemma LTS_Semantics.lts_semantics
.expressiveness_entails_distinctiveness

The other direction does not hold. For instance, HML ⊈ HML \ {⊤}, but
they are equally expressive as ¬¬⊤ can cover for the removed element. At
the same time, {⊤} is more expressive than ∅, but equally distinctive.

The stronger version of Proposition 2.4 is thus:

Proposition 2.5. If 𝒪 is less or equal in distinctiveness to 𝒪′ then 𝑝 ⪯𝒪′ 𝑞
implies 𝑝 ⪯𝒪 𝑞 for all 𝑝, 𝑞.41 41 lemma LTS_Semantics.lts_semantics

.preorder_expressiveness_contraposition
Often, an equivalence may be characterized by different sublogics. In partic-
ular, one may find smaller characterizations as in the following example for
bisimilarity.

Example 2.11. Consider 𝒪⌊B⌋ ⊆ HML described by the following grammar.

𝜑⌊B⌋ ∶∶= ⟨𝛼⟩ ⋀𝑖∈𝐼 𝜑⌊B⌋
𝑖

∣ ¬𝜑⌊B⌋

𝒪⌊B⌋ is a proper subset of HML. For instance, it lacks the observation ⟨a⟩⟨b⟩⊤.
Due to the subset relation, 𝒪⌊B⌋ must be less or equal in expressiveness to
HML, but this inclusion too is strict as ⊤ cannot be covered for. But both
logics are equally distinctive!
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Lemma 2.8. 𝒪⌊B⌋ and HML are equally distinctive.42 42 theorem HML_Spectrum.lts.hml_and
_bisimulation_game_observations_equally
_expressiveProof. One direction is immediate from Lemma 2.7 as 𝒪⌊B⌋ ⊆ HML.

For the other direction, we need to establish that for each 𝜑 ∈ HML dis-
tinguishing some 𝑝 from some 𝑞, there is a 𝜑′ ∈ 𝒪⌊B⌋ distinguishing 𝑝 from 𝑞.
We induct on the structure of 𝜑 with arbitrary 𝑝 and 𝑞.

• Case ⟨𝛼⟩𝜑 distinguishes 𝑝 from 𝑞. Thus there is 𝑝′ with 𝑝 𝛼−→ 𝑝′

distinguishing 𝑝′ from all 𝑞′ ∈ Der(𝑞, 𝛼). By induction hypothesis,
there must be 𝜑′

𝑞′ ∈ 𝒪⌊B⌋ distinguishing 𝑝′ from 𝑞′ for each 𝑞′. Thus
⟨𝛼⟩ ⋀𝑞′∈Der(𝑞,𝛼) 𝜑′

𝑞′ ∈ 𝒪⌊B⌋ distinguishes 𝑝 from 𝑞.
• Case ⋀𝑖∈𝐼 𝜑𝑖 distinguishes 𝑝 from 𝑞. Therefore some 𝜑𝑖 already distin-
guishes 𝑝 from 𝑞. By induction hypothesis, there must be 𝜑′

𝑖 ∈ 𝒪⌊B⌋
distinguishes 𝑝 from 𝑞.

• Case ¬𝜑 distinguishes 𝑝 from 𝑞. Thus 𝜑 distinguishes 𝑞 from 𝑝. By
induction hypothesis, there is 𝜑′ ∈ 𝒪⌊B⌋ distinguishing 𝑞 from 𝑝. Ac-
cordingly, ¬𝜑′ ∈ 𝒪⌊B⌋ distinguishes 𝑝 from 𝑞.

The smaller bisimulation logic 𝒪⌊B⌋ will become important again later in the
next section (in Subsection 2.4.4).

2.4 Games

So far, we have only seen behavioral equivalences and modal formulas as
mathematical objects and not cared about decision procedures. This section
introduces game-theoretic characterizations as a way of easily providing deci-
sion procedures for equivalences and logics alike. Intuitively, the games can
be understood as dialogs between a party that tries to defend a claim and a
party that tries to attack it.

2.4.1 Reachability Games

We useGale–Stewart-style reachability games (in the tradition of Gale & Stew-
art, 1953) where the defender wins all infinite plays.

Definition 2.15 (Reachability Game). A reachability game 𝒢 = (𝐺, 𝐺d, › ›)
is played on a directed graph consisting of

• a set of game positions 𝐺, partitioned into

– defender positions 𝐺d ⊆ 𝐺
– and attacker positions 𝐺a ≔ 𝐺 \ 𝐺d,

• and a set of game moves › › ⊆ 𝐺 × 𝐺.43 43 locale Equivalence_Games.game

We denote by 𝒢(𝑔0) the game played from starting position 𝑔0 ∈ 𝐺.
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Definition 2.16 (Plays andWins). We call the paths 𝑔0𝑔1… ∈ 𝐺∞ with 𝑔𝑖 › ›
𝑔𝑖+1 plays of 𝒢(𝑔0). They may be finite or infinite. The defender wins infinite
plays. If a finite play 𝑔0 … 𝑔𝑛 ›/ › is stuck, the stuck player loses: The defender
wins if 𝑔𝑛 ∈ 𝐺a, and the attacker wins if 𝑔𝑛 ∈ 𝐺d.

Usually, games are non-deterministic, that is, players have choices how a play
proceeds at their positions. The player choices are formalized by strategies:

Definition 2.17 (Strategies and Winning Strategies). An attacker strategy is
a (partial) function mapping play fragments ending at attacker positions to
next positions to move to, 𝑠a ∶ 𝐺∗𝐺a → 𝐺, where 𝑔a › › 𝑓a(𝜌𝑔a) must hold
for all 𝜌𝑔a where 𝑠a is defined.

A play 𝑔0𝑔1… ∈ 𝐺∞ is consistent with an attacker strategy 𝑠a if, for all
its prefixes 𝑔0…𝑔𝑖 ending in 𝑔𝑖 ∈ 𝐺a, 𝑔𝑖+1 = 𝑠a(𝑔0…𝑔𝑖).

Defender strategies are defined analogously, 𝑠d ∶ 𝐺∗𝐺d → 𝐺.
If 𝑠 ensures a player to win, 𝑠 is called a winning strategy for this player.

The player with a winning strategy for 𝒢(𝑔0) is said to win 𝒢(𝑔0).
Usually, we will focus on positional strategies, that is, strategies that only

depend on the most recent position, which we will type 𝑠a ∶ 𝐺a → 𝐺 (or
𝑠d ∶ 𝐺d → 𝐺, respectively).

We call the positions where a player has a winning strategy their winning
region.

Definition 2.18 (Winning Region). The set Wina ⊆ 𝐺 of all positions 𝑔 where
the attacker wins 𝒢(𝑔) is called the attacker winning region of 𝒢. The defender
winning region Wind is defined analogously.

Example 2.12 (A Simple Choice). Inspect the game in Figure 2.7, where round
nodes represent defender positions and rectangular ones attacker positions.
Its valid plays starting from (1) are (1), (1)[2a], (1)[2b], and (1)[2a](3). The
defender can win from (1) with a strategy moving to [2b] where the attacker
is stuck. Moving to [2a] instead would get the defender stuck. So, the de-
fender winning region is Wind = {(1), [2b]} and the attacker wins Wina =
{[2a], (3)}.

Figure 2.7: A simple game.

The games we consider are positionally determined. This means, for each pos-
sible initial position, exactly one of the two players has a positional winning
strategy 𝑠.

Proposition 2.6 (Determinacy). Reachability games are positionally deter-
mined, that is, for any game, each game position has exactly one winner:
𝐺 = Wina ∪ Wind and Wina ∩ Wind = ∅, and they can win using a positional
strategy.44 44 This is just an instantiation of positional

determinacy of parity games (Zielonka, 1998).
Reachability games are the subclass of parity
games only colored by 0.

We care about reachability games because they are versatile in characterizing
formal relations. Everyday inductive (and coinductive) definitions can easily
be encoded as games as in the following example.
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Example 2.13 (The ≤-Game). Consider the following recursive definition of
a less-or-equal operator � on natural numbers in some functional program-
ming language. (Consider nat to be defined as recursive data type nat = 0
| Succ nat.)

( 0 � m ) = True
(Succ n � 0 ) = False
(Succ n � Succ m) = (n � m)

We can think of this recursion as a game where the attacker tries to prove
that the left number is bigger than the right by always decrementing the left
number and challenging the defender to do the same for the right stack too.
Whoever hits zero first, loses.

This means we distribute the roles such that the defender wins for output
True and the attacker for output False. The two base cases need to be dead
ends for one of the players.

Formally, the game 𝒢leq consists of attacker positions [𝑛, 𝑚] and defender
positions (𝑛, 𝑚) for all 𝑛, 𝑚 ∈ ℕ, connected by chains of moves:

[𝑛 + 1, 𝑚] › ›leq (𝑛, 𝑚)
(𝑛, 𝑚 + 1) › ›leq [𝑛, 𝑚].

𝒢leq now characterizes ≤ on ℕ in the sense that: The defender wins 𝒢leq from
[𝑛, 𝑚] precisely if 𝑛 ≤ 𝑚. (Proof: Induct over 𝑛 with arbitrary 𝑚.)

The game is boring because the players do not ever have any choices. They
just count down their way through the natural numbers till they hit [0, 𝑚−𝑛]
if 𝑛 ≤ 𝑚, or (𝑛 − 𝑚, 0) otherwise.

𝒢leq is quite archetypical for the preorder and equivalence games we will
use in the following pages. But do not worry, the following games will de-
mand the players to make choices.

2.4.2 The Semantic Game of HML

As first bigger example of how recursive definitions can be turned into games,
let us quickly look at a standard way of characterizing the semantics of HML
(Definition 2.11) through a game. The defender wins precisely if the game
starts from a state and formula such that the state satisfies the formula.

Definition 2.19 (HML Game). For a transition system 𝒮 = (𝒫,Act, −→), the
HML game 𝒢𝒮

HML = (𝐺HML, 𝐺d, › ›HML) is played on 𝐺HML = 𝒫 × HML,
where the defender controls observations and negated conjunctions, that is
(𝑝, ⟨𝛼⟩𝜑) ∈ 𝐺d and (𝑝, ¬ ⋀𝑖∈𝐼 𝜑𝑖) ∈ 𝐺d (for all 𝜑, 𝑝, 𝐼), and the attacker
controls the rest.

• The defender can perform the moves:

(𝑝, ⟨𝛼⟩𝜑) › ›HML (𝑝′, 𝜑) if 𝑝 𝛼−→ 𝑝′ and
(𝑝, ¬⋀𝑖∈𝐼 𝜑𝑖) › ›HML (𝑝, ¬𝜑𝑖) with 𝑖 ∈ 𝐼 ;
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• and the attacker can move:

(𝑝, ¬⟨𝛼⟩𝜑) › ›HML (𝑝′, ¬𝜑) if 𝑝 𝛼−→ 𝑝′ and
(𝑝, ⋀𝑖∈𝐼 𝜑𝑖) › ›HML (𝑝, 𝜑𝑖) with 𝑖 ∈ 𝐼 and

(𝑝, ¬¬𝜑) › ›HML (𝑝, 𝜑).

The intuition is that disjunctive constructs (⟨⋅⟩ ⋯, ¬ ⋀ ⋯) make it easier for
a formula to be true and thus are controlled by the defender who may chose
which of the ways to show truth is most convenient. At conjunctive con-
structs (¬⟨⋅⟩ ⋯, ⋀ ⋯) the attacker choses the option that is the easiest to dis-
prove.

Example 2.14. The game of Example 2.12 is exactly the HML game 𝒢𝒮PQ
HML for

formula ⟨𝜏⟩¬⟨a⟩⊤ and state P of Example 2.10 with (1) ≔ (P, ⟨𝜏⟩¬⟨a⟩⊤),
[2a] ≔ (pa, ¬⟨a⟩⊤), [2b] ≔ (pb, ¬⟨a⟩⊤), and (3) ≔ (p1, ¬⊤).

The defender winning region Wind = {(P, ⟨𝜏⟩¬⟨a⟩⊤), (pb, ¬⟨a⟩⊤)} cor-
responds to the facts that P ∈ J⟨𝜏⟩¬⟨a⟩⊤K and pb ∈ J¬⟨a⟩⊤K.
As the technicalities are tangential to this thesis, we state the characterization
result without proof:45 45 A detailed presentation of a more general

HML game, also extending to recursive HML,
can be found in Wortmann et al. (2015, Chap-
ter 3).

Lemma 2.9. The defender wins 𝒢𝒮
HML((𝑝, 𝜑)) precisely if 𝑝 ∈ J𝜑K.

2.4.3 The Bisimulation Game

We now can add the bottom layer of Figure 2.1: That bisimilarity can be char-
acterized through a game. This approach has been popularized by Stirling
(1996).

Definition 2.20 (Bisimulation Game). For a transition system 𝒮, the bisim-
ulation game 𝒢𝒮

B
46 is played on attack positions 𝐺B

a ≔ 𝒫 × 𝒫 and defense 46 locale Equivalence_Games.bisim_game
positions 𝐺B

d ≔ Act × 𝒫 × 𝒫 with the following moves:

• The attacker may swap sides

[𝑝, 𝑞] › ›B [𝑞, 𝑝],

• or challenge simulation

[𝑝, 𝑞] › ›B (𝛼, 𝑝′, 𝑞) if 𝑝 𝛼−→ 𝑝′;

• and the defender answers simulation challenges

(𝛼, 𝑝′, 𝑞) › ›B [𝑝′, 𝑞′] if 𝑞 𝛼−→ 𝑞′.

A schematic depiction of the game rules can be seen in Figure 2.8. From
dashed nodes, the game proceeds analogously to the initial attacker position.

Example 2.15. Consider peven ∼B podd of Example 2.7. The bisimulation game
on this system is given by Figure 2.9:

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game%7Clocale
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[𝑝, 𝑞] (𝛼, 𝑝′, 𝑞) [𝑝′, 𝑞′]

[𝑞, 𝑝]

𝑝 𝛼−→ 𝑝′ 𝑞 𝛼−→ 𝑞′

Figure 2.8: Game scheme of the bisimulation game (Definition 2.20).

[peven, podd]

(𝜏 , podd, podd) (𝜏, peven, peven)

[podd, peven]

swap

challenge

swap

challengeanswer

answer

Figure 2.9: Bisimulation game under peven, podd. Moves are annotated with
the game rules from which they derive.

Clearly, there is no way for the attacker to get the defender stuck. Whatever
strategy the attacker choses, the game will go on forever, leading to a win for
the defender. That it is always safe for the defender to answer with moves to
[peven, podd] and [podd, peven] corresponds to ℛ ≔ {(peven, podd), (podd, peven)}
being a bisimulation.

Example 2.16. Let us recall Example 2.6 of the “trolled philosophers,” where
we determined Q and T to be non-bisimilar. The bisimulation game graph for
the system is depicted in Figure 2.10.

The attacker can win by moving [Q, T] › ›B [T, Q] › ›B (𝜏, q3, Q) › ›B
[q3, qAB] › ›B [qAB, q3] › ›B (a, q1, q3) ›/ ›B. Along this sequence of posi-
tions, the defender never has a choice and is stuck in the end. The attacker
exploits, that T can reach an early deadlock via T 𝜏−→ q3.

Theorem 2.2 (Stirling’s Game Characterization). The defender wins the bisim-
ulation game 𝒢𝒮

B starting at attacker position [𝑝, 𝑞] precisely if 𝑝 ∼B 𝑞.47 47 theorem Equivalence_Games.bisim_game
.bisim_game_characterization

Proof. Sketch for both directions:

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_game_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_game_characterization%7Cfact
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[Q, T]

[T, Q]

(𝜏 , qAB, T)

[qAB, qAB]

[qAB, q3]

(a, q1, q3)

(b, q2, q3)

(𝜏, qAB, Q)

(𝜏, q3, Q)

[q3, qAB]

swap

Q 𝜏−→ qAB

swap

T 𝜏−→ q3

T 𝜏−→ qAB

swap
swap

T 𝜏−→ qAB

T 𝜏−→ q3

Q 𝜏−→ qAB

Q 𝜏−→ qAB

qAB
a−→ q1

qAB
b−→ q2

Figure 2.10: Bisimulation game on non-bisimilar states Q and T of Example 2.16. Moves are labeled by their justification. Defender-won positions
are tinted blue.

• If ℛ is a symmetric simulation with (𝑝, 𝑞) ∈ ℛ, then the following
positional defender strategy is well-defined and winning from [𝑝, 𝑞]:48 48 lemma Equivalence_Games.bisim_game

.bisim_implies_defender_winning_strategy
𝑠(𝛼, 𝑝′, 𝑞) ≔ [𝑝′, choose 𝑞′. (𝑝′, 𝑞′) ∈ ℛ ∧ 𝑞 𝛼−→ 𝑞′].

• If there is a positional defender strategy 𝑠 winning from [𝑝, 𝑞], then the
following relation ℛ𝑠 with (𝑝0, 𝑞0) ∈ ℛ𝑠 is a symmetric simulation:49 49 lemma Equivalence_Games.bisim_game

.defender_winning_strategy_implies_bisim
ℛ𝑠 ≔ {(𝑝, 𝑞) ∣ there is a play (𝑝0, 𝑞0), … , (𝑝, 𝑞) following strategy 𝑠}.

Remark 2.3. One of the big advantages of game characterizations is that they
provide a way to discuss equivalence and inequivalence interactively among
humans. There also are several computer game implementations of bisimula-
tion games.

Figure 2.11: Screenshot of Peacock’s bisimula-
tion computer game.

For instance, Peacock (2020) implements a game about simulation and
bisimulation as well as several weaker notions. The human plays the attacker
trying to point out the inequivalence of systems according to the rules of Def-
inition 2.20. Figure 2.11 shows a screenshot of said game. It can be played on
https://www.concurrency-theory.org/rvg-game/.

Example 2.17. If one plays the bisimulation game of Definition 2.20 without
the swapping moves, it will characterize the simulation preorder.

Consider the family of processes N𝑛 with 𝑛 ∈ ℕ. Define N0 ∶= 0 and
N𝑛+1 ∶= a.N𝑛. Then, the simulation game played from [N𝑛, N𝑚] is isomor-
phic to the ≤-game 𝒢leq from Example 2.13.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_implies_defender_winning_strategy%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_implies_defender_winning_strategy%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.defender_winning_strategy_implies_bisim%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.defender_winning_strategy_implies_bisim%7Cfact
https://www.concurrency-theory.org/rvg-game/
https://www.concurrency-theory.org/rvg-game/
https://www.concurrency-theory.org/rvg-game/
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In this sense, comparisons of programs and of numbers are … comparable.

2.4.4 How Bisimulation Game and HML Are Connected

Let us pause to think how bisimulation game and Hennessy–Milner logic con-
nect.

You might have wondered why we even need a dedicated bisimulation
game. The Hennessy–Milner theorem implies that we could directly use the
HML game of Definition 2.19 to decide bisimilarity:

Definition 2.21 (Naive Bisimulation Game). We extend the Definition 2.19 by
the following prefix:

1. To challenge [𝑝, 𝑞], the attacker picks a formula 𝜑 ∈ HML (claiming
that 𝜑 distinguishes the states) and yields to the defender (𝜑, 𝑝, 𝑞).

2. The defender decides where to start the HML game:

1. Either at (𝑝, ¬𝜑) (claiming 𝜑 to be non-distinguishing because it
is untrue for 𝑝)

2. or at (𝑞, 𝜑) (claiming 𝜑 to be non-distinguishing because it is true
for 𝑞).

3. After that the turns proceed as prescribed by Definition 2.19.

This naive game, too, has the property that the defender wins from [𝑝, 𝑞] iff
𝑝 ∼B 𝑞. The downside of the game is that the attacker has infinitely many
options 𝜑 ∈ HML to pick from!

The proper bisimulation game of Definition 2.20, on the other hand, is
finite for finite transition systems. Therefore, it induces decision procedures.

We will now argue that the bisimulation game actually is a variant of the
naive game, where (1) the attacker names their formula gradually, and (2) the
formulas stem from 𝒪⌊B⌋ ⊆ HML of Example 2.11. To this end, we will show
that attacker’s winning strategies imply distinguishing formulas, and that a
distinguishing formula from 𝒪⌊B⌋ certifies the existence of winning attacker
strategies.

Example 2.18. Let us illustrate how to derive distinguishing formulas using
the game of Example 2.16.

Recall that the attacker wins by moving [Q, T] › ›B [T, Q] › ›B
(𝜏, q3, Q) › ›B [q3, qAB] › ›B [qAB, q3] › ›B (a, q1, q3) ›/ ›B. In Figure 2.12,
we label the game nodes with the (sub-)formulas this strategy corresponds to.
Swap moves become negations, and simulation moves become observations
with a conjunction of formulas for each defender option. This attacker
strategy can thus be expressed by ¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ 𝒪⌊B⌋.

More generally, the following lemma explains the construction of distinguish-
ing formulas from attacker strategies:



2.4. Games 26

[Q, T]

¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}

[T, Q]

⟨𝜏⟩ ⋀{¬⟨a⟩⊤}

(𝜏, qAB, T)

[qAB, qAB]

[qAB, q3]

⟨a⟩⊤ (a, q1, q3)

(b, q2, q3)

(𝜏, qAB, Q)

(𝜏, q3, Q)

[q3, qAB]

¬⟨a⟩⊤

Figure 2.12: The bisimulation game of Example 2.18 with attacker formulas.

Lemma 2.10. Let 𝑠 be a positional winning strategy for the attacker on 𝒢B from
[𝑝, 𝑞]. Construct formulas recursively from game positions, 𝜑𝑠(𝑔), as follows:

𝜑𝑠([𝑝, 𝑞]) ≔ {¬𝜑𝑠([𝑞, 𝑝]) if 𝑠([𝑝, 𝑞]) = [𝑞, 𝑝]
⟨𝛼⟩ ⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′} if 𝑠([𝑝, 𝑞]) = (𝛼, 𝑝′, 𝑞)

Then 𝜑𝑠([𝑝, 𝑞]) is well-defined and distinguishes 𝑝 from 𝑞. Also, 𝜑𝑠([𝑝, 𝑞]) ∈
𝒪⌊B⌋.

Proof.

1. The given construction is well-defined as 𝑠 must induce a well-founded
order on game positions in order to be attacker-winning.

2. The distinction can be derived by induction on the construction of
𝜑𝑠([𝑝, 𝑞]). TODO

Lemma 2.11. If 𝜑 ∈ 𝒪⌊B⌋ distinguishes 𝑝 from 𝑞, then the attacker wins from
[𝑝, 𝑞].

Proof. By induction on the derivation of 𝜑 ∈ 𝒪⌊B⌋ according to the definition
from Example 2.11 with arbitrary 𝑝 and 𝑞.

• Case 𝜑 = ⟨𝛼⟩ ⋀𝑖∈𝐼 𝜑𝑖. As 𝜑 distinguishes 𝑝 from 𝑞, there must be a
𝑝′ such that 𝑝 𝛼−→ 𝑝′ and that ⋀𝑖∈𝐼 𝜑𝑖 distinguishes 𝑝′ from every 𝑞′ ∈
Der(𝑞, 𝛼). That is, for each 𝑞′ ∈ Der(𝑞, 𝛼), at least one 𝜑𝑖 ∈ 𝒪⌊B⌋ must
be false. By induction hypothesis, the attacker thus wins each [𝑝′, 𝑞′].
As these attacker positions encompass all successors of (𝛼, 𝑝′, 𝑞), the
attacker also wins this defender position and can win from [𝑝, 𝑞] by
moving there with a simulation challenge.
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• Case 𝜑 = ¬𝜑′. As 𝜑 distinguishes 𝑝 from 𝑞, 𝜑′ distinguishes 𝑞 from 𝑝.
By induction hypothesis, the attacker wins [𝑞, 𝑝]. So they can also win
[𝑝, 𝑞] by performing a swap.

Lemma 2.10 and Lemma 2.11, together with the fact that 𝒪⌊B⌋ and HML are
equally distinctive (Lemma 2.8), yield:

Theorem 2.3. The attacker wins 𝒢B from [𝑝, 𝑞] precisely if there is 𝜑 ∈ HML
distinguishing 𝑝 from 𝑞.

Of course, we already knew this! Theorem 2.3 is just another way of gluing
together the Hennessy–Milner theorem on bisimulation (Theorem 2.1) and
the Stirling’s bisimulation game characterization (Theorem 2.2), modulo the
determinacy of games. We thus have added the last arrow on the right side of
Figure 2.1.

2.4.5 Deciding Reachability Games

All we need to turn a game characterization into a decision procedure, is a
way to decide which player wins a position. Algorithm 2.1 describes how to
compute who wins a finite reachability game for each position in time linear
to the size of the game graph |› ›|.

def compute_winning_region(𝒢 = (𝐺, 𝐺d, › ›)) ∶
defender_options ∶= [𝑔 ↦ 𝑛 ∣ 𝑔 ∈ 𝐺 ∧ 𝑛 = |{𝑔′ ∣ 𝑔 › › 𝑔′}|]
attacker_win ∶= ∅
todo ∶= {𝑔 ∈ 𝐺d ∣ defender_options[𝑔] = 0}
while todo ≠ ∅∶

g ∶= some todo
todo ∶= todo \ {g}
if g ∉ attacker_win ∶

attacker_win ∶= attacker_win ∪ {g}
for gp ∈ (⋅ › › g) ∶

defender_options[gp] ∶= defender_options[gp] − 1
if gp ∈ 𝐺a ∨ defender_options[gp] = 0∶

todo ∶= todo ∪ {gp}
Wina ∶= attacker_win
return Wina

Algorithm 2.1: Algorithm for deciding the attacker winning region Wina of a
reachability game 𝒢 in linear time of |› ›| and linear space of |𝐺|.

Intuitively, compute_winning_region first assumes that the defender
were to win everywhere and that each outgoing move of every position might
be a winning option for the defender. Over time, every position that is deter-
mined to be lost by the defender is added to a todo list.50 50 Variants of this algorithm and explanation

have also been used in Bisping (2018) and Bisp-
ing et al. (2022).
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At first, the defender loses immediately exactly at the defender’s dead-
ends. Each defender-lost position is added to the attacker_win set. To trig-
ger the recursion, each predecessor is noted as defender-lost, if it is controlled
by the attacker, or the amount of outgoing defender options is decremented if
the predecessor is defender-controlled. If the count of a predecessor position
hits 0, the defender also loses from there.

Oncewe run out of todo positions, we know that the attacker has winning
strategies exactly for each position we have visited.

The following Table 2.1 lists how Algorithm 2.1 computes the winning
region Wina = {[2a], (3)} of the game of Example 2.11.

Table 2.1: Solving the game of Example 2.11

g defender_options todo

- (1) ↦ 2, (3) ↦ 0 (3)
(3) (1) ↦ 2, (3) ↦ 0 [2a]
[2a] (1) ↦ 1, (3) ↦ 0 ∅

The inner loop of Algorithm 2.1 clearly can run at most |› ›|-many times.
Using sufficiently clever data structures, the algorithm thus shows:

Proposition 2.7. Given a finite reachability game 𝒢 = (𝐺, 𝐺d, › ›), the at-
tacker’s winning region Wina (and Wind as well) can be computed in O(|› ›|)
time and O(|𝐺|) space.

2.5 Discussion

This chapter has taken a tour of characterizations for standard notions of be-
havioral preorder and equivalence on transition systems such as trace equiv-
alence and bisimilarity.

In particular, in constructing the relationships of Figure 2.1 for bisimilar-
ity, we have collected the theoretical ingredients for a certifying algorithm to
check bisimilarity of states.

Figure 2.13 describes how to not only answer the question whether two
states 𝑝 and 𝑞 are bisimilar, but how to also either provide a bisimulation
relation or a distinguishing formula for the two as certificates for the answer.
(The arrows stand for computations, the boxes for data.)

In this view, the game of possible distinctions and their preventability
between attacker and defender serves as the “ground truth” about the bisimi-
larity of two states. Bisimulation relations and modal formulas only appear as
witnesses of defender and attacker strategies, mediating between game and
transition system. The Hennessy–Milner theorem emerges on this level as
a shadow of the determinacy of the bisimulation game (Note 1). This whole
framework draws heavily from Stirling (1996).
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𝑝 and 𝑞 in
system 𝒮

Bisimulation
game 𝒢𝒮

B

Winning regions
Win𝒢𝒮

B
a and Win𝒢𝒮

B
d

Bisimulation
relation ℛ𝑠

Distinguishing
formula 𝜑𝑠

Yes / No

Certifiably yes Certifiably no

Def. 2.20

Bisimilar?

Alg. 2.1

[𝑝, 𝑞] ∈ Win𝒢𝒮
B

d

Yes: Thm. 2.2 No: Lem. 2.10

Check relation fulfills
bisimulation Def. 2.6

Check distinction using
HML game Def 2.19 + Alg. 2.1

Figure 2.13: Checking bisimilarity and providing certificates.

We have disregarded the topic of axiomatic characterizations for behav-
ioral equivalences. In these, sets of equations on process algebra terms (such
as CCS) define behavioral congruences. Thus, they tend to be coupled to spe-
cific process languages and lack the genericity we pursue in starting out from
transition systems.

We have observed that behavioral equivalences can be arranged in
hierarchies and that these hierarchies could be handled nicely using modal
characterizations to rank distinguishing powers (Subsection 2.3.3). We have
also seen how to link game rules to productions in a language of potentially
distinguishing formulas (Subsection 2.4.4). This departs from common
textbook presentations that motivate the bisimulation game through the
relational (coinductive) characterization (e.g. Sangiorgi, 2012). In later
chapters, we will rather derive equivalence games from grammars of modal
formulas (Note 2), to generalize the framework of Figure 2.13 for whole
spectra of equivalences.

But first, we have to make formal what we mean by equivalence spectra.



3 Context: The Spectrum of
Equivalences

We will now take a deeper dive into how groups of behavioral equivalences
and preorders can be ranked in equivalence spectra.

For the following chapters, we will focus on the main “linear-time–
branching-time spectrum“ for the semantics of concrete processes treated by
Glabbeek (1990), the so-called “strong spectrum.” However, we will order
the equivalences using the approach of parameterized notions of observability
from the later Glabbeek (1993).

The first core idea of this chapter is:

Idea 3: Notions of observability bring order

Groups of equivalences can be defined and ranked in lattices of notions
of observability.

In particular, Section 3.2 will introduce such a spectrum, forming a hierarchy
of modal logics for the strong spectrum.

From there, we will quickly run into the second core idea:

Idea 4: We have a Spectroscopy problem

We can ask what equivalences from a spectrum are the most fitting to
relate two states.

Section 3.3 will define the problem formally and give lower-bounds for its
complexity on the strong spectrum.

3.1 Observability Hierarchies

Let us begin to pick up the idea from Subsection 2.3.3 that modal logics can
nicely rank equivalences. The intuition is that HML sublogics capture what
we consider to be observable. The more we mark as observable, the finer the
resulting equivalence relations do become.
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3.1.1 Understanding the Equivalence Hierarchy through
Modal Logics

As promised, we revisit the hierarchy between bisimilarity, similarity, and
trace equivalence of Subsection 2.2.3, modally. So far, we have only looked
into the characterization of bisimilarity through the whole of HML in Theo-
rem 2.1 or through 𝒪⌊B⌋ in Example 2.11.

Definition 3.1. We define the two HML-sublogics 𝒪T, the linear positive frag-
ment, and 𝒪S, the positive fragment, by the grammars starting at 𝜑T and 𝜑S.

𝜑T ∶∶= ⟨𝛼⟩𝜑T ∣ ⊤
𝜑S ∶∶= ⟨𝛼⟩𝜑S ∣ ⋀𝑖∈𝐼⟨𝛼𝑖⟩𝜑S

𝑖

The logics characterize trace and simulation preorder (and equivalence):

Lemma 3.1. 𝑝 ⪯T 𝑞 precisely if 𝑝 ⪯𝒪T
𝑞.51 51 theorem HML_Spectrum.lts.observations

_traces_characterizes_trace_preorder
Lemma 3.2. 𝑝 ⪯S 𝑞 precisely if 𝑝 ⪯𝒪S

𝑞.52 52 theorem HML_Spectrum.lts.observations
_simulation_characterize_simulation_preorderClearly, 𝒪T ⊂ 𝒪S ⊂ HML. So, Proposition 2.4 that sublogics will equate

at least as much as their parent logic, yields another way of establishing the
entailment hierarchy between bisimilarity, similarity, and trace equivalence
of Subsection 2.2.3.53 53 Taking the two previous lemmas together

with Theorem 2.1 for ∼B and HML.While the relational definitions for (bi-)similarity of Definition 2.7 and
the denotational definition of trace equivalence Definition 2.5 live in differ-
ent worlds, the two equivalences become naturally comparable in the modal
realm.

The modal view also reveals an intuitive hierarchy of “testing scenarios”
for the equivalences, framed as black box tests:

Trace equivalence matches an observer that can see sequences of events. They
just watch repeated executions of the program, but are oblivious to pos-
sibilities and decisions.

Similarity matters to an experimenter that can also explore different branches
of possibilities. This is valid if the experimenter can somehow copy the
system state during the execution.

Bisimilarity captures that the experimenter can moreover determine if a fu-
ture course of events is impossible at some point. This means that the
experimenter can not only copy the execution state but also exhaus-
tively test every possibility of how the system may continue.

But such levels of observability do not need to be linear, as we will see in the
next subsection …

3.1.2 Incomparabilities

Awell-known and natural notion of equivalence is that of failure equivalence.
Intuitively, a failure says that the experimenter may follow a trace and see

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_traces_characterizes_trace_preorder%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_traces_characterizes_trace_preorder%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_simulation_characterize_simulation_preorder%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_simulation_characterize_simulation_preorder%7Cfact
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which actions are impossible at its end. Its standard definition is based on
failure denotations:

Definition 3.2 (Failures). The set of failures of a process Failures(𝑝) is recur-
sively defined as

• ((), 𝑋) ∈ Failures(𝑝) if 𝑋 ∩ Ini(𝑝) = ∅,
• (𝛼 ⋅ 𝑤⃗, 𝑋) ∈ Failures(𝑝) if there is 𝑝′ with 𝑝 𝛼−→ 𝑝′ and (𝑤⃗, 𝑋) ∈

Failures(𝑝′).

For instance, the failure (𝜏, {a}) is in Failures(P) but not in Failures(Q) on
Figure 2.3.

But would it not be nice if we could prevent the invention of new mathe-
matical objects as denotations for every new notions of observability we con-
sider? Fortunately, we can save the work, by directly employing modal logics:

Definition 3.3. We define failure observations 𝒪F by the grammar:

𝜑F ∶∶= ⟨𝛼⟩𝜑F ∣ ⋀𝑖∈𝐼 ¬⟨𝛼𝑖⟩⊤

Clearly, this encompasses what we may observe via traces, but is something
that we cannot observe using simulation. We consider ⪯F given by ⪯𝒪F

.
The distinguishing failure (𝜏, {a}) can be as ⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ 𝒪F in HML.

The formula distinguishes P from Q on Figure 2.3, but P ⪯S Q (cf. Exam-
ple 2.5). On the other hand, no failure from 𝒪F, distinguishes Q from P, but
Q ⪯̸S P.

Figure 3.1: Preorder/equivalence hierarchy.

As a consequence, simulation preorder and failure preorder are incompa-
rable, that is, neither one implies the other. The same is true of the corre-
sponding equivalences: similarity and failure equivalence. The situation is
summed up by the non-linear hierarchy in Figure 3.1. After a quick glance
at the diamond-like figure, it probably comes as no surprise, what kind of
mathematical structure we employ to handle the hierarchy: Lattices.

3.1.3 Lattices

To handle non-linearity, we will be working with lattices of notions of be-
havioral equivalence. The following definition gives the preliminaries to talk
about this kind of partial orders.

Definition 3.4 (Lattices, Bounds, Chains). A lattice is a partially ordered set
(𝐵, ≤), where there are greatest lower bounds inf{𝑏1, 𝑏2} and least upper
bounds sup{𝑏1, 𝑏2} between each pair of elements 𝑏1, 𝑏2 ∈ 𝐵.

The greatest lower bound of a set 𝐵′ ⊆ 𝐵 is called its infimum, inf𝐵′. It
refers to the greatest element 𝑏 ∈ 𝐵 such that 𝑏 ≤ 𝑏′ for all 𝑏′ ∈ 𝐵′.54 54 Note that not necessarily 𝑏 ∈ 𝐵′!

Dually, the least upper bound of a set 𝐵′ ⊆ 𝐵 is called its supremum,
sup𝐵′. It refers to the least element 𝑏 ∈ 𝐵 such that 𝑏 ≥ 𝑏′ for all 𝑏′ ∈ 𝐵′.

For the pair-wise infimumwe also use infix notation 𝑏1 ⊓𝑏2 = inf{𝑏1, 𝑏2},
and analogously 𝑏1 ⊔ 𝑏2 = sup{𝑏1, 𝑏2}.
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If a lattice (𝐵, ≤) not only allows infima and suprema for pairs but for any
set 𝐵′ ⊆ 𝐵, it is called complete. We say ⊓-complete or ⊔-complete if only
one of the two is true.

We call totally ordered subset 𝐵′ ⊆ 𝐵 a chain.
Dually, some 𝐵′ ⊆ 𝐵 with no two elements 𝑏1, 𝑏2 ∈ 𝐵′ such that 𝑏1 ≤ 𝑏2

is called an anti-chain.

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{2}{1} {3}

∅

Figure 3.2: Lattice of subsets from Example 3.1.

Example 3.1 (Subset Lattice). Given any set 𝐵, its subsets and ordered by set
inclusion, (2𝐵, ⊆), form a complete lattice.

The greatest lower bound is given by set intersection ⋂ 𝐵′ with 𝐵′ ⊆ 𝐵.
The least upper bound is set union ⋃ 𝐵′ with 𝐵′ ⊆ 𝐵. ∅ ∈ 2𝐵 is the least
element, 𝐵 ∈ 2𝐵 is itself the greatest bound.

Consider the subset lattice over 𝐵 = {1, 2, 3}. It is “cube-like,” as can
be seen in its Hasse diagram in Figure 3.2. An example of a (maximal) chain
would be {∅, {1}, {1, 2}, 𝐵} (the nodes connected by a blue dotted line in the
figure), because its members are ordered linearly ∅ ⊂ {1} ⊂ {1, 2} ⊂ 𝐵.
{{1}, {2}, {3}} forms a (maximal) anti-chain (the nodes connected by a red
dashed line in the figure), because its members do not include each other.
Their respective subsets are chains / anti-chains as well.

(0, 0)

1

2

1

2

(∞, 0)(0, ∞)

(∞, ∞)

Figure 3.3: Visualization of the infinitary grid of
ℕ2 (and in gray, ℕ2

∞) in Example 3.2.

Example 3.2 (Vector Lattice). Given linearly-ordered set (𝐵, ≤𝐵), its 𝑛-ary
Cartesian product with pointwise order (𝐵𝑛, ≤) forms a lattice, where 𝑏 ≤ 𝑏′

iff 𝑏𝑘 ≤ 𝑏′
𝑘 for all 𝑘 ∈ {1, …, 𝑛}. Greatest lower bounds and least upper

bounds can be transferred pointwisely from 𝐵.
For instance, pairs of natural numbers, (ℕ2, ≤), form a lattice, as visual-

ized in Figure 3.3. It is ⊓-complete, that is, for any set from ℕ2, one can pick
a greatest lower bound. However, the lattice is not ⊔-complete: For instance,
the set ℕ×{0} has no upper bound. If we take the natural numbers extended
with an upper bound ∞, ℕ∞, as basis, then (ℕ2

∞, ≤) forms a complete lattice.

3.2 The Linear-Time–Branching-Time Spectrum

Van Glabbeek’s two papers on the “linear-time–branching-time spectrum”
(1993, 2001) show how all common equivalences can be understood to form a
lattice of sublanguages of HML (and a variant of HML for equivalences with
silent steps). His hierarchy of equivalences derives from a hierarchy of no-
tions of observability.55 We will introduce a similar construction: at first, in a 55 In particular, the weak spectrum (Glabbeek,

1993) makes this really formal.generic form, then for the strong spectrum of Glabbeek (2001).

3.2.1 Spectra as Observability Lattices

As we will discuss various equivalence spectra (van Glabbeek (1993, 2001)
already gives two different ones), let us first introduce an abstract description
of such spectra.
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Definition 3.5 (Equivalence Spectrum). An equivalence spectrum (N, ≤
, 𝒪𝑁∈N) consists of

• a lattice of notions of observability, N, partially ordered by ≤ ⊆ N × N,
and

• corresponding logics 𝒪𝑁 ∶ 2HML for 𝑁 ∈ N.

𝒪𝑁∈𝑛𝑜𝑡𝑖𝑜𝑛𝑠 must be monotonic, that is: for any two notions 𝑁, 𝑀 ∈ N, it
holds that

𝑁 ≤ 𝑀 implies 𝒪𝑁 ⊆ 𝒪𝑀 .
Let us use our new definition to construct a subset lattice as in Example 3.1 to
recreate the hierarchy of Figure 3.1.

Example 3.3. Consider the notions

Nsimple ≔ 2{(∧),(¬)},

ordered by subset inclusion, and the family of observation languages𝒪𝑁∈Nsimple

given by the family of grammars with some conditional productions:

𝜑𝑁 ∶∶= ⊤
∣ ⟨𝛼⟩𝜑𝑁

∣ ⋀𝑖∈𝐼 𝜑𝑁
𝑖 if (∧) ∈ 𝑁

∣ ⋀𝑖∈𝐼 ¬⟨𝛼𝑖⟩⊤ if (¬) ∈ 𝑁
∣ ¬𝜑𝑁 if {(∧), (¬)} = 𝑁 .

Clearly, 𝑁 ⊆ 𝑀 implies 𝒪𝑁 ⊆ 𝒪𝑀 for 𝑁, 𝑀 ∈ Nsimple. We obtain the
diamond hierarchy of Figure 3.4. It matches the diamond of Figure 3.1, but
this time, the hierarchy is an effect of the ordered notions.

Figure 3.4: Hierarchy of simple notions of equiv-
alence.

While the incomparable languages of Subsection 3.1.2 form no lattice, e.g.𝒪S∪
𝒪F ≠ HML, the notions of the present Example 3.3 do form a lattice, as {(∧)}∪
{(¬)} = {(∧), (¬)}. This is one of the reasons why it is convenient to add
notions of observability as an abstraction layer.

We can also ask what the least notion is to include a specific formula:

Definition 3.6 (Syntactic Expressiveness Price). In the context of a ⊓-
complete spectrum (N, ≤, 𝒪𝑁∈N), the syntactic expressiveness price of a
formula 𝜑 that appears in one of the logics is defined as

expr(𝜑) ∶= inf{𝑁 ∈ N ∣ 𝜑 ∈ 𝒪𝑁}.

Thinking of the lattice of notions as a hierarchy of how difficult it is to tell
processes apart, we consider this as a kind of “price tag” to put on formulas
depending on their syntactic complexity. Higher syntactic complexity allows
formula sets of higher expressiveness.

In this view, a trace formula is cheaper than a failure formula. Using Ex-
ample 3.3: expr(⟨𝜏⟩⟨a⟩) = ∅ ⊂ {(¬)} = expr(⟨𝜏⟩ ⋀{¬⟨a⟩}), which captures
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that we need a strictly smaller part of the grammar to construct the trace
formula.

3.2.2 The Strong Notions of Observability

Now we can approach the strong spectrum. We will encode its notions as a
ℕ∞-vector lattice as in Example 3.2. To cover all common behavioral pre-
orders, we use six dimensions, counting certain syntactic features of HML-
formulas:

1. Formula modal depth of observations.
2. Formula nesting depth of conjunctions.
3. Maximal modal depth of deepest positive clauses in conjunctions.
4. Maximal modal depth of the other positive clauses in conjunctions.
5. Maximal modal depth of negative clauses in conjunctions.
6. Formula nesting depth of negations.

Definition 3.7 (Strong Spectrum). Wedefine the strong notions of observability
using vectors of extended naturals

Nstrong ≔ ℕ6
∞,

ordered by pointwise comparison of vector components, and the family of
strong observation languages 𝒪strong

𝑁∈Nstrong given by the parameterized grammar
starting from 𝜑𝑁 :56 56 primrec Priced_HML.formula_of_price

𝜑𝑁 ∶∶= ⊤
∣ ⟨𝛼⟩𝜑𝑁−ê1

∣ ⋀{𝜓𝑁−ê2 , 𝜓(𝑁−ê2)⊓(∞,∞,𝑁4,∞,∞,∞), 𝜓(𝑁−ê2)⊓(∞,∞,𝑁4,∞,∞,∞), …}
𝜓𝑁 ∶∶= ⟨𝛼⟩𝜑(𝑁⊓(𝑁3,∞,∞,∞,∞,∞))−ê1

∣ ¬⟨𝛼⟩𝜑(𝑁⊓(𝑁5,∞,∞,∞,∞,∞))−ê1−ê6

The productions only exist if the respective recursive invocations are defined
on the domain of notions. For instance, 𝜑𝑁 ⇝ ⟨𝛼⟩𝜑𝑁−ê1 is no valid produc-
tion for 𝑁 = (0, 1, 0, 0, 0, 0) because (−1, 1, 0, 0, 0, 0) ∉ Nstrong.

Example 3.4. The smallest notion to cover the failure formula of Subsection
3.1.2 would be (2, 1, 0, 0, 1, 1), that is,

⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ 𝒪(2,1,0,0,1,1)strong .

This is because the formula has two levels ofmodal observations, where the in-
ner one is negated. The negation is wrapped in a conjunction with no positive
clauses. A visualization for how exprstrong(⟨𝜏⟩ ⋀{¬⟨a⟩⊤}) = (2, 1, 0, 0, 1, 1)
(according to Definition 3.6) comes together is given in the upcoming Fig-

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_HML.html#Priced_HML.formula_of_price%7Cconst
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ure 3.5. Formally, the reason is that the following derivation is optimal:

𝜑(2,1,0,0,1,1) ⇝ ⟨𝜏⟩𝜑(1,1,0,0,1,1)

⇝ ⟨𝜏⟩ ⋀{𝜓(1,0,0,0,1,1)}
⇝ ⟨𝜏⟩ ⋀{¬⟨a⟩𝜑(0,0,0,0,1,0)}
⇝ ⟨𝜏⟩ ⋀{¬⟨a⟩⊤}.

If we reexamine the grammar of 𝒪F in Definition 3.3, we notice that the for-
mulas it can produce match those of 𝒪strong

(∞,1,0,0,1,1) of the strong spectrum in
Definition 3.7.

⟨𝜏⟩ ∧ ¬ ⟨𝑎⟩ ⊤

𝑒1 = 2
𝑒2 = 1

𝑒5 = 1𝑒6 = 1

Figure 3.5: Pricing formula ⟨𝜏⟩ ⋀{¬⟨a⟩⊤} with syntactic expressiveness 𝑒 =
(2, 1, 0, 0, 1, 1).

An example for the pricing of a more complex tree-like formula is given in
Figure 3.6.

⟨𝜏⟩ ∧

⟨𝑒𝑐𝐴⟩ ⟨𝑙𝑐𝐴⟩ ⊤

⟨𝜏⟩ ⊤

¬ ⟨𝑒𝑐𝐵⟩ ⊤

𝑒1 = 3
𝑒2 = 1

𝑒3 = 2 𝑒4 = 1

𝑒5 = 1𝑒6 = 1

Figure 3.6: Pricing formula ⟨𝜏⟩ ⋀{⟨𝑒𝑐𝐴⟩⟨𝑙𝑐𝐴⟩⊤, ⟨𝜏⟩⊤, ¬⟨𝑒𝑐𝐵⟩⊤} with syn-
tactic expressiveness 𝑒 = (3, 1, 2, 1, 1, 1).

Lemma 3.3. The strong spectrum of Definition 3.7 contains the notions of be-
havioral equivalence we have discussed so far.

1. The observation language 𝒪strong
(∞,0,0,0,0,0) exactly matches the characteri-

zation of traces 𝒪T from Definition 3.1 and thus characterizes trace pre-
order.57 57 theorem Priced_Spectrum.lts.traces_priced

_characterization2. The observation language 𝒪strong
(∞,∞,∞,∞,0,0) exactly matches the character-

ization of simulation observations 𝒪S from Definition 3.1 and thus char-
acterizes simulation.58 58 theorem Priced_Spectrum.lts.simulation

_priced_characterization3. The observation language 𝒪strong
(∞,∞,∞,∞,∞,∞) matches HML in distinctive-

ness and thus characterizes bisimilarity.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.traces_priced_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.traces_priced_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.simulation_priced_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.simulation_priced_characterization%7Cfact
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4. The observation language 𝒪strong
(∞,1,0,0,1,1) exactly matches failure observa-

tions 𝒪F of Definition 3.3.

Proof. The only non-trivial case is (3) for bisimilarity:
Observe that 𝒪⌊B⌋ ⊆ 𝒪strong

(∞,∞,∞,∞,∞,∞) by examining its grammar in Ex-
ample 2.11. As 𝒪⌊B⌋ already has complete HML-distinctiveness by Lemma 2.8,
so must its superlogic 𝒪strong

(∞,∞,∞,∞,∞,∞).

So far, we have only established that the six-dimensional spectrum also covers
the notions that Example 3.3 has already covered–in a more complicated way.
The extra dimensions will pay off in the next subsection.

3.2.3 The Strong Linear-Time–Branching-Time Spectrum

Using the six dimensions of Definition 3.7, we can assign coordinates to all
other common notions of the strong linear-time–branching-time spectrum.

Definition 3.8 (Strong Linear-Time–Branching-Time Spectrum). Coordinates
with respect to the notions of Definition 3.7 for the common notions of be-
havioral equivalence and preorder in the strong linear-time–branching-time
spectrum are given in Figure 3.7.59 59 When writing vectors in labels and figures,

we omit the parentheses (… ) for readability.
For the rest of the thesis, we will take the equivalences as defined by the coor-
dinates as canonical. Lemma 3.3 has established that the coordinates of traces,
simulation, failures, and bisimulation match the definitions one commonly
finds in the literature. To establish the same for the other notions, wouldmean
a lot of (repetitive) definitions, whichmostly reproduce vanGlabbeek’s survey
(2001). Mattes (2024) proves in Isabelle/HOL that the coordinate system of the
conference version of this spectrum (Bisping, 2023a) match distinctiveness of
the modal characterizations in (Glabbeek, 2001).

Warning

I might add such a marathon if there’s strong popular demand.

There are a few standard questions that come to mind for people who are
familiar with the various spectra of equivalences when seeing Figure 3.7. The
following remarks address these points.
Remark 3.1 (Selection of Notions). At the core, we treat the same notions as
Glabbeek (2001). But we feature a slightly more modern selection.

Our spectrum additionally includes strong versions of impossible futures
(Voorhoeve & Mauw (2001)) and revivals (Roscoe (2009)) as equivalences
whose relevance has only been noted after the publication of Glabbeek
(2001).

On the other hand, we glimpse over completed trace, completed simula-
tion, and possibleworlds observations like Kučera&Esparza (1999), who stud-
ied properties of “good” observation languages. These notions would need a



3.2. The Linear-Time–Branching-Time Spectrum 38

bisimulation B
∞, ∞, ∞, ∞, ∞, ∞

2-nested simulation 2S
∞, ∞, ∞, ∞, ∞, 1

ready simulation RS
∞, ∞, ∞, ∞, 1, 1

readiness traces RT
∞, ∞, ∞, 1, 1, 1

failure traces FT
∞, ∞, ∞, 0, 1, 1

readiness R
∞, 1, 1, 1, 1, 1

possible futures PF
∞, 1, ∞, ∞, ∞, 1

impossible futures IF
∞, 1, 0, 0, ∞, 1

simulation 1S
∞, ∞, ∞, ∞, 0, 0

revivals RV
∞, 1, 1, 0, 1, 1

failures F
∞, 1, 0, 0, 1, 1

traces T
∞, 0, 0, 0, 0, 0

enabledness E
1, 0, 0, 0, 0, 0

Figure 3.7: Hierarchy of common equivalences/preorders ordered by observ-
ability coordinates.
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different HML grammar, featuring exhaustive conjunctions ⋀𝑎∈Act 𝜑𝑎, where
the 𝜑𝑎 are deactivated actions for completed traces, and more complex trees
for possible worlds.
Remark 3.2 (Ambiguous Coordinates). For many of the logics in Fig-
ure 3.7, there are multiple coordinates that characterize the same logic.
For instance, due to the second dimension (conjunctions) being set to 0
for traces T, the higher dimensions do not matter and any coordinate
𝑁 = (∞, 0, 𝑁3, 𝑁4, 𝑁5, 𝑁6) will lead to the same observation language
𝒪strong

𝑁 = 𝒪strong
T .

Indeed, Figure 3.7 always selects the least coordinate to characterize a
sublogic, which ensures that domination of coordinates in the figure and en-
tailment between behavioral preorders coincide.
Remark 3.3 (Other Coordinates). We have singled out a handful of coordi-
nates. Many other coordinates will still correspond to distinct equivalences.
For instance, we could consider 𝑁 2T = (2, 0, 0, 0, 0, 0), preordering states that
cannot be distinguished by traces up to a length of 2. But it is difficult to make
a case for such a “notion of equivalence,” which washes away differences of
future behavior.

Two kinds of depth-bounded families, however, are common in the liter-
ature, and can also be placed in our spectrum:

• 𝑘-step bisimilarity: (𝑘, ∞, ∞, ∞, ∞, ∞) is a 𝑘-observation approxima-
tion of bisimilarity that sometimes appears in proofs.60 60 TODO: look up example

• 𝑘-nested similarity: (∞, ∞, ∞, ∞, ∞, 𝑘 − 1) for 𝑘 > 1 defines a
spectrum of modal quantifier alternation depth between similarity and
bisimilarity.

Remark 3.4 ((In-)finitary Variants). One can introduce more dimensions to the
spectrumwith respect to the possibility of infinitary observations. Our choice
focuses on natural and most common versions of the equivalences, in partic-
ular: similarity and bisimilarity with unbounded (infinitary) branching and
trace-like notions with finitary depth. Notions in Figure 3.7 correspond pre-
cisely to those without superscripts in the infinitary linear-time–branching-
time spectrum of Glabbeek (2001, Figure 9).

3.2.4 Non-Intersectionality

The strong spectrum of Definition 3.8 is much richer than the diamond
spectrum from Example 3.3. Still, its observation languages form no lattice.
For instance, the lines of simulation and failures join at ready simulation—
and their coordinates as well (∞, ∞, ∞, ∞, 0, 0) ⊔ (∞, 1, 0, 0, 1, 1) =
(∞, ∞, ∞, ∞, 1, 1). But 𝒪strong

S ∪ 𝒪strong
F ≠ 𝒪strong

RS and this makes a
difference:
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Example 3.5. Consider the CCS processes a.(a.b + a) and a.a.b + a.a. They
cannot be told apart by 𝒪strong

S or 𝒪strong
F and thus are simulation and failure

equivalent (and moreover even ready-trace equivalent).
Still, the formula ⟨a⟩ ⋀{⟨a⟩ ⋀{¬⟨b⟩}, ⟨a⟩⟨b⟩} ∈ 𝒪strong

RS distinguishes
the first process from the second. Therefore, the processes are not ready-
simulation equivalent.

What this shows is that one cannot prove two states to be ready-equivalent
by showing that they are equated by simulation and failures:

∼S ∩ ∼F ⊈ ∼RS.

The relationship between the characterized equivalences is non-intersectional.
In general, multiple preorders may relate two states without this entailing

a stronger equivalence. So the question “Which equivalence from a spectrum
relates two states?” is to simple, one has to ask: “Which equivalences relate
two processes?”

This motivates the spectroscopy problem.

3.3 Spectroscopy

Now that we have a formal way of describing equivalence spectra, we can
make formal the spectroscopy problem—the core topic of this thesis. We will
also collect first thoughts on its complexity.

3.3.1 The Spectroscopy Problem

The problem has originally been introduced in Bisping et al. (2022) as the “ab-
stract observation preorder problem” with respect to modal characterizations
of the strong spectrum. We here reintroduce it in a more generic form.

Definition 3.9 (Spectroscopy Problem). In the context of a transition system
𝒮 and a spectrum (N, ≤, 𝒪𝑁∈N), the spectroscopy problem asks:

Input States 𝑝 and 𝑞.
Output Set of notions N𝑝,𝑞 ⊆ N, such that 𝑝 ⪯𝒪𝑁

𝑞 for each 𝑁 ∈ N𝑝,𝑞.

Example 3.6. For the “trolled philosophers” of Example 2.6, we have deter-
mined that the systems are simulation-preordered, but not bisimilar, that is,
Q ⪯S T, but Q ⪯̸B T. The first fact implies Q ⪯T T.

But what about other notions from the strong spectrum of Subsection
3.2.3? Besides similarity, there might well be incomparable or finer notions
that too preorder Q to T!

The solution to the spectroscopy problem on Q and T is Nstrong
Q,T = {𝑁 ∈

Nstrong ∣ 𝑁 ≰ (2, 2, 0, 0, 2, 2)}. A minimal formula to distinguish Q from T
with this coordinate would be ⋀{¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}}. (The following chapters
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will reveal how to reliably arrive at this knowledge, in particular, the mini-
mality.)

Because the coordinate of 2-nested simulation, 2S = (∞, ∞, ∞, ∞, ∞, 1)
is not less or equal to (2, 2, 0, 0, 2, 2), we arrive at Q ⪯2S T, which implies all
preorders of Figure 3.7 except for bisimilarity.

simulation

enabledness
/trace

2-nested sim

(im)possible
future

ready
simulation

failure
/ready

conjunctions = 2

neg. clause depth = 2
bisimulation

⋀{¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}}

Figure 3.8: Cross section of the strong spectrum showing the dimensions con-
junctions, negative clause depth, and negation depth. All preorders below the
red mark at (2, 2, 2) hold in Example 3.6.

Note that we have expressed Nstrong
Q,T through a negation (“⋯ ≰

(2, 2, 0, 0, 2, 2)”). The reason is that a positive description is usually un-
wieldy. In this (comparably easy) case, we could for example list the
half-spaces below the cheapest distinction, and this would read: Nstrong

Q,T =
({0, 1}×ℕ5

∞)∪(ℕ∞ ×{0, 1}×ℕ4
∞)∪(ℕ4

∞ ×{0, 1}×ℕ∞)∪(ℕ5
∞ ×{0, 1}).

Technically, it is convenient to not compute N𝑝,𝑞 directly. Rather we aim to
construct the Pareto front of minimal notions that do not hold, Min(N \N𝑝,𝑞).
The Pareto front serves as a unique representation, from which N𝑝,𝑞 can be
constructed as complement of the upwards closureN\ ↑ Min(N\N𝑝,𝑞) (where
↑𝐵 ∶= {𝑏 ∣ ∃𝑏′ ∈ 𝐵. 𝑏′ ≤ 𝑏} is the upwards closure for 𝐵 subset of some
partially-ordered set). Clearly, Pareto fronts form anti-chains and appear nat-
urally in optimization problems.

All spectra we are concerned with are well-quasi ordered, which means
that each Min(N \ N𝑝,𝑞) must be finite in size (Kruskal, 1972) and thus “more
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handy” than the full sets N𝑝,𝑞 or N \ N𝑝,𝑞.
So, effectively, we will be asking: What are the minimal notions to dis-

tinguish 𝑝 from 𝑞—and then often talk about the converse: The most-fitting
notions to preorder or equate the states. Everything else is implied.

3.3.2 Spectroscopy as Abstract Subtraction

Another way of viewing the spectroscopy problem is that we aim to compute
an abstracted kind of difference between programs.

Definition 3.10 (Observations and Difference). On a transition system 𝒮, the
possible observations of a state, J⋅K ∶ 𝒫 → 2HML, are defined as:

J𝑝K ≔ {𝜑 ∈ HML ∣ 𝑝 ∈ J𝜑K}.

The difference between 𝑝 and 𝑞 is defined as:

Δ(𝑝, 𝑞) ≔ J𝑝K \ J𝑞K .

Δ(𝑝, 𝑞) expresses the set of observations one could make of 𝑝 that one cannot
make of 𝑞. This set will be empty, when the states are bisimilar, or infinite,
otherwise.

With this notation, we could rephrase Definition 2.12:

Proposition 3.1. Two states 𝑝 and 𝑞 are preordered with respect to a sublogic
𝒪 ⊆ HML:

𝑝 ⪯𝒪 𝑞 ⟺ Δ(𝑝, 𝑞) ∩ 𝒪 = ∅.
A spectroscopy then is about computing some abstraction Δ𝛼 such that 𝑁 ∈
Δ𝛼(𝑝, 𝑞) precisely if Δ(𝑝, 𝑞) ∩ 𝒪𝑁 ≠ ∅.

3.3.3 Complexities

What complexities to expect when deciding spectroscopy problems on finite
systems? Details depend, of course, on the specific spectrum and flavor of
Hennessy–Milner logic we are concerned with. Still, solving the spectroscopy
problem cannot be easier than solving the covered individual equivalence
problems.

To get a first idea, let us examine the complexities of common equivalence
checking problems in the strong spectrum. The rule of thumb is that trace-like
equivalences are PSPACE-complete and bisimilarities are P-complete (Bal-
cázar et al., 1992; Hüttel & Shukla, 1996).

Bisimilarity finds itself in a valley of tractability, if we look at a cross sec-
tion through the equivalence spectrum as in Figure 3.9. The best known bisim-
ilarity algorithms for finite-state transition systems take O(∣−→∣ log |𝑆|) time
(usually deriving from Paige & Tarjan, 1987).

For coarser simulation-like equivalences, the best known algorithms need
O(∣−→∣ |𝑆|) time (Ranzato & Tapparo, 2010).61 61 Or O(∣−→∣ ∣𝑆/∼S ∣) to name the bound as Ran-

zato & Tapparo (2010) present it.
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ID GI B S T E U
O(1)

O(∣−→∣)
O(∣−→∣ log |𝑆|)

O(∣−→∣ |𝑆|)
NP

PSPACE

Figure 3.9: Bisimilarity’s complexity valley.

The finer graph-isomorphism equivalence (Definition 2.8) again is
harder with the best known solution (Babai, 2016) in quasi-polynomial time
2O((log𝑛)3).

There however are little strict hardness results at this level of granularity.
So, better time complexities for graph isomorphism, bisimilarity, and simi-
larity are conceivable (albeit improbable). Groote et al. (2023) show that at
least partition-refinement algorithms for bisimilarity cannot do better than
O(∣−→∣ log |𝑆|). In a recent preprint, Groote & Martens (2024) establish that
similarity is strictly more complex than bisimilarity.

The trivial equivalences at the end of the cross section, identity ID and
universal equivalence U, can be solved directly. Enabledness equivalence E
can as well be computed quite quickly by just comparing outgoing transitions.

In this thesis, we solve the spectroscopy problem for the strong and weak
spectrum. So, we must be at least as complex as the equivalences between
bisimilarity and universal equivalence, boxed in Figure 3.9. Consequently, the
spectroscopy problem for the standard equivalence spectra is PSPACE-hard.

3.4 Discussion

In this chapter, we have formalized how to handle spectra of equivalence
(Note 3), and instantiated the approach to the strong spectrum of Glabbeek
(2001). From there, we have introduced the spectroscopy problem, which asks
for notions to preorder compared states (Note 4).

By formulating the problem in terms of a lattice over ℕ∞-vectors, the
family of qualitative strong preorder/equivalence problems becomes a single
quantitative problem: The spectroscopy problem for the strong spectrum.

We have already laid the groundwork to shift the semantic question of
equivalence into a syntactic question of the shape of distinguishing formulas.

The core ideas of this section have already been explored in Bisping et
al. (2022) and Bisping (2023a) for the strong spectrum. However, in my
prior work the expressiveness prices played a more crucial role. Here, we
instead opted for a parameterized grammar to define notions and their obser-
vations 𝒪𝑁 . In this grammar, we force observations in clauses of conjunctions
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and count ⊤ as part of the 0-notion. These are mostly superficial changes to
streamline the following presentation. We have shown that traces, failures,
simulation and bisimulation equivalence as defined by the notion coordinates
match their textbook definitions.

So far, we have a problem and confidence that its solution conveys in-
formation about equivalences of the strong spectrum. Subsection 3.3.3 has
established that spectroscopy complexity must be at least PSPACE on the
strong spectrum.

However, there is a polynomial-time part of spectrum around bisimilar-
ity and (ready) similarity. In the next two chapters, we will first solve the
spectroscopy problem for this polynomial slice and then extend to the whole
strong spectrum. After that, we will also consider the weak spectrum.



4 Approach: Equivalence
Problems as Energy
Games

Time to get real. This chapter will demonstrate my core approach by solving
the spectroscopy problem in an easy instance.

It will be easy in two regards: Firstly, complexity-wise—we narrow our
focus on equivalences of polynomial-time. Secondly, conceptually—we just
use the bisimulation game of Chapter 2, almost directly!

We already know that winning attacker strategies in the bisimulation
game correspond to distinguishing formulas, and that these can be computed
quite straightforwardly. All we need on top of this is a way of quantifying
the amount of syntactic expressiveness in these formulas during the game.
For this, we employ the first core idea of this chapter:

Idea 5: Quantitative games for quantitative problems

Spectra of equivalence problems can be encoded as energy games.

Energy games are games in which players have limited resources that can
be used up or recharged during moves. Players running out of a resource
lose the game. After introducing such games in Section 4.1, we will prove in
Section 4.2 that several core equivalences can be characterized as defender’s
winning energy budgets by adding three-dimensional energies to the bisim-
ulation game.

The second core idea is how to compute these winning budgets:

Idea 6: Computing cheapest wins

Attacker’s winning budgets in energy reachability games can be com-
puted by a generalized shortest paths algorithm.

Section 4.3 will provide an algorithm to solve a range of energy-game-like
quantitative problems as long as the energy updates can be undone through
a Galois connection, which is a generalization of invertibility on monotonic
functions.

By combining the two contributions, we arrive at a polynomial-time solu-



4.1. Energy Games 46

tion of the spectroscopy problem for the polynomial slice of the strong spec-
trum.

Effectively, we adapt the game framework of Figure 2.13 to not treat one
equivalence, but a spectrum of equivalences. This approach is summarized in
Figure 4.1.

States 𝑝, 𝑞 in
transition system 𝒮

Polynomial notions that fit
to preorder 𝑝 to 𝑞

Bisimulation
energy game 𝒢 𝒮

B

Minimal attacker winning
budgets Winmin

a ([𝑝, 𝑞])

Spectroscopy problem

Definition 4.7 Theorem 4.1 XOR

Algorithm 4.1

Chapter 3

Section 4.2

Section 4.3

Figure 4.1: Howwewill employ energy games to solve the spectroscopy prob-
lem on an easy spectrum.

4.1 Energy Games

Energy games extend games as discussed in Section 2.4 with resources of the
players, called energies. We will focus on reachability games with an energy-
bounded attacker. In most publications, energy games update vector-valued
energy levels by vector addition or subtraction. We work with more general
monotonic energy games (Subsection 4.1.1) and then zoom in on declining en-
ergy games (Subsection 4.3), which include updates that combine vector com-
ponents by taking their minimum. The latter are exactly what we need for
the following Section 4.2.

4.1.1 Monotonic Energy Games

To introduce energy games, we generalize the definitions on games (Defini-
tion 2.15 and the following) to include energy levels. We define how winning
regions then become quantitative winning budgets, which can still be charac-
terized inductively.

Definition 4.1 (Energy Reachability Game). Given a partially ordered
set of energies (ℰ, ≤), an energy reachability game 𝒢 is a reachabil-
ity game (𝐺, 𝐺d, › ›) extended by an edge labeling of energy updates
𝑢𝑝𝑑 ∶ (› ›) → (ℰ → ({⊥} ∪ ℰ)).

We demand the following for monotonic energy games:

• ⊥ ∉ ℰ is final in the sense that 𝑢𝑝𝑑(𝑚)(⊥) = ⊥.
• All update functions 𝑢 = 𝑢𝑝𝑑(𝑚) with 𝑚 ∈ › › are monotonic and
upward-closed with respect to ≤. More formally, this means that for



4.1. Energy Games 47

any energies 𝑒, 𝑒′ ∈ ℰ, if 𝑒 ∈ dom(𝑢) and 𝑒 ≤ 𝑒′, then 𝑒′ ∈ dom(𝑢)
and 𝑢(𝑒) ≤ 𝑢(𝑒′), where dom(𝑢) ∶= {𝑒 ∈ ℰ ∣ 𝑢(𝑒) ≠ ⊥}.

We denote by 𝒢 (𝑔0, 𝑒0) the game played from starting position 𝑔0 ∈ 𝐺 with
initial energy level 𝑒0 ∈ ℰ.

Definition 4.2 (Energy Level). For a finite play 𝜌 = 𝑔0𝑔1…𝑔𝑛−1 ∈ 𝐺∗ of
𝒢 (𝑔0, 𝑒0), its energy level EL(𝜌) is computed recursively:

• EL(𝑔0) ≔ 𝑒0
• EL(𝑔0…𝑔𝑖+1) ≔ 𝑢𝑝𝑑(𝑔𝑖, 𝑔𝑖+1)(EL(𝑔0…𝑔𝑖))

For infinite plays 𝜌 ∈ 𝐺𝜔, we define energy levels to equal ⊥.
We consider the attacker to be energy-bounded and understand EL(𝜌) =

⊥ to mean that they have run out of energy. Thus, we declare plays with
EL(𝜌) = ⊥ to be won by the defender (even if they are stuck).

Strategies and winning strategies work exactly as in the energy-less
scenario. Additionally, we lift positional strategies of Definition 2.17 to be
energy-positional in the sense that they pick next moves depending on the
current energy level, i.e. 𝑓 ∶ 𝐺a × ℰ → 𝐺.

Instead of a winning region as in Definition 2.18, we define winning bud-
gets for game positions:

Definition 4.3 (Winning Budgets). For each position 𝑔0 ∈ 𝐺 of energy game
𝒢 , the attacker winning energy budgets, Wina(𝑔0) ⊆ ℰ are the energies 𝑒0
where the attacker wins 𝒢 (𝑔0, 𝑒0). The defender winning budgets Wind are
defined analogously.

Classical energy games use ℕ-vectors for energies and vector addition for
updates as in the following example:

Example 4.1. Consider vector energies ℰ = ℕ2 with point-wise order and the
energy game with graph in Figure 4.2. Edges are labeled by update vectors
𝑢⃗ ∈ ℤ2, each representing an update function

𝑒 ↦ {𝑒 + 𝑢⃗ if 𝑒 + 𝑢⃗ ≥ 0

⊥ otherwise.

Can the attacker win from g1 with energy (0, 0)?
No, as all outgoing paths would lead to ⊥-energy and thus to the defender

winning.
But if the attacker starts with budget (0, 2), they can take the upper path to

g4 with energy (2, 1), from where both defender options lead to the defender
being stuck in g6.

Also, if the attacker starts with (2, 1), they win through the lower g3-path.
Moving to g4 directly, would be more expensive than the g2/g3-

alternatives—so we can disregard this option.
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g1

g2

g3

g4

g5

g6

0, 0

−1, 0

−2, −1
+2, −1

0, 0

0, 0

−1, 0

0, −1

Figure 4.2: Simple energy game of Example 4.1.

Starting with less energy means that the defender has an option of
bankrupting the attacker at g4.

Summing up our observations, (0, 2) and (2, 1) define a Pareto front of
minimal budgets where the attacker wins from g4, as depicted in Figure 4.3.

(0, 2)

(2, 1)

Figure 4.3: Attacker’s Pareto front for g1 of ex-
ample energy game.

We can notice two things from the example:

1. A purely positional strategy would not suffice for the defender to win re-
liably at g4. Say the game starts with energy (1, 1), that is, with a budget
where the defender should win. Then, the level with either be (0, 1) or
(3, 0) at g4. The defender has to either move to g5 or g6, depending on
the play so far. So, either the defender must know the history, or at
least the current energy level to make an ideal decision.

2. Attacker’s winning budgets are upward-closed, and defender budgets are
downward-closed.

Both are effects of Definition 4.1. More formally, the winning budgets are
characterized by the following two propositions:

Proposition 4.1. Given an energy game 𝒢, the attacker winning budgets Win𝒢
a

are point-wise upward-closed, that is, ↑ Win𝒢
a (𝑔) = Win𝒢

a (𝑔) for all positions
𝑔 ∈ 𝐺.62 62 This is formalized as Lemma 3.2 in Lemke

(2024).
Proposition 4.2. Given an energy game 𝒢, the attacker winning budgets Win𝒢

a
are characterized inductively by the following rules:63 63 Proved as Theorem 3 in Lemke (2024).

𝑔a ∈ 𝐺a 𝑔a › › 𝑔′ 𝑢𝑝𝑑(𝑔a, 𝑔′)(𝑒) ∈ Win𝒢
a (𝑔′)

𝑒 ∈ Win𝒢
a (𝑔a)

𝑔d ∈ 𝐺d ∀𝑢, 𝑔′. 𝑔d › › 𝑔′ ⟶ 𝑢𝑝𝑑(𝑔d, 𝑔′)(𝑒) ∈ Win𝒢
a (𝑔′)

𝑒 ∈ Win𝒢
a (𝑔d)

The inductive definition is nice as it allows for local proves of how the attacker
wins. Defender’s wins on the other hand would dually be a coinductive con-
cept because the defender wins loops.64 64 By the way, to those wondering: It is in-

tentional that this thesis aims to achieve all its
constructions without recurring to coinduction.
Therefore, coinduction is only mentioned in side
remarks and is not required to understand what
is going on.
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Remark 4.1. Ordinary reachability games can be seen as a special case of en-
ergy games with trivial energies, e.g. ℰ = {1} and 𝑢𝑝𝑑(⋅) = idℰ.
Remark 4.2. We deviate in two important points from other work on energy
games:

• In the literature, it is more common to consider the defender instead of
the attacker to be energy-bounded (e.g. Fahrenberg et al., 2011). This
choice follows the intuition that there is a party with scarce resources
that wants to keep the system running. For our purposes, however we
want to bound the resources of an attacker, which is no fundamental
change. Still, one cannot have both at the same time: Kupferman &
Shamash Halevy (2022), studying both-bounded energy games, estab-
lish that their winner is only decidable if both parties have only one-
dimensional energies.

• We define energy-reachability games more abstractly than is common:
In other publications, energy gameswork on numbers with component-
wise updates as seen in Example 4.1. We do not demand this as, in the
next sections, we will need updates that combine information from dif-
ferent components of the energy vector. Even prior generalizations on
energy update functions such as Ésik et al. (2013) do not allow sufficient
flexibility in this regard.

4.1.2 Declining Energy Games

We now turn to special kind of monotonic energy games with vector-valued
energy levels where updates will never increase energy levels in any compo-
nent. An 𝑁 -dimensional declining energy game is played on energy vectors:

Definition 4.4 (Energies and Energy Updates). For dimensionality 𝑁 , the set
of energies, En, is given by (ℕ ∪ {∞})𝑁 .

The set of energy update labels, Up, contains (𝑢1, … , 𝑢𝑁) ∈ Upwhere each
component 𝑢𝑘 is a symbol of the form

• 𝑢𝑘 ∈ {−1, 0} (relative update), or
• 𝑢𝑘 = min𝐷 where 𝐷 ⊆ {1, … , 𝑁} and 𝑘 ∈ 𝐷 (minimum selection
update).

Applying an update to an energy, upd(𝑢, 𝑒), where 𝑒 = (𝑒1, … , 𝑒𝑁) ∈ En and
𝑢 = (𝑢1, … , 𝑢𝑁) ∈ Up, yields a new energy vector 𝑒′ where 𝑘th components
𝑒′

𝑘 ≔ 𝑒𝑘 + 𝑢𝑘 for 𝑢𝑘 ∈ ℤ and 𝑒′
𝑘 ≔ min𝑑∈𝐷 𝑒𝑑 for 𝑢𝑘 = min𝐷. Updates that

would cause any component to become negative yield ⊥.

Example 4.2. Consider the update label (min{1,2}, 0, −1).

• upd((min{1,2}, 0, −1), (1, 1, 0)) equals ⊥ because of the last component.
• upd((min{1,2}, 0, −1), (2, 1, 1)) equals (1, 1, 0).
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• upd((min{1,2}, 0, −1), (1, 1, 1)) equals (1, 1, 0), as well.
• There is no 𝑒 ∈ En such that upd((min{1,2}, 0, −1), 𝑒) = (1, 0, 0), be-
cause the second component would demand a lower first component.

In summary, upd((min{1,2}, 0, −1), ⋅) is neither injective nor surjective
with respect to En. The same is true for most other 𝑢 and upd(𝑢, ⋅) with a
min-update component.

Definition 4.5 (Declining Energy Game). Given a weight labeling 𝑤∶ (› ›
) → Up, an 𝑁 -dimensional declining energy game 𝒢 is an energy reachability
game with energies ℰ ≔ En and with edges labeled 𝑢𝑝𝑑(𝑚) ≔ upd(𝑤(𝑚), ⋅).

We write 𝑔 ›𝑢› 𝑔′ for a move 𝑔 › › 𝑔′ labeled by weight 𝑤(𝑔, 𝑔′) = 𝑢.

Declining energy games differ from more common energy games with vector
addition updates as seen in Example 4.1 due to the non-invertibility of updates
we encountered in Example 4.2.

Proposition 4.3. In this model, energy levels can only decline.

• Updates may only decrease energies, upd(𝑢, 𝑒) ≤ 𝑒.
• Updates are monotonic as demanded: If 𝑒𝐴 ≤ 𝑒𝐵, then upd(𝑢, 𝑒𝐴) ≤

upd(𝑢, 𝑒𝐵).<

4.2 Characterizing the P-Time Part of the Spec-
trum

As hinted at in Subsection 3.3.3, parts of the strong equivalence spectrum
can be decided in polynomial time, whereas others require polynomial space
(and thus effectively exponential time). In this section, we will show how
to adapt the standard bisimulation game of Definition 2.20 to decide not just
bisimulation, but all polynomial-time equivalences of the strong spectrum at
once.

4.2.1 The Polynomial Slice

First, let us make explicit which equivalences we include in the polynomial-
time slice of the spectrum. (The fact that they indeed can be decided efficiently
is mostly well-known, but also itself a corollary of this section.)

To define the polynomial slice, we only use three dimensions:

1. modal depth
2. depth of negative clauses, and
3. nesting depth of negations (that is, the first, fifth and sixth dimension

of the strong spectrum Definition 3.7).

Components for other dimensions of the strong spectrum of the previous
chapter are effectively set to ∞.



4.2. Characterizing the P-Time Part of the Spectrum 51

Definition 4.6 (Polynomial-Time Strong Spectrum). We denote as
polynomial-time strong spectrum the projection of the strong spectrum
(Definition 3.7) to the first, fifth, and sixth dimension, thus by notions

Npoly−strong ≔ ℕ3
∞,

and the family of strong observation languages

𝒪poly−strong
(𝑁1,𝑁2,𝑁3)∈Npoly−strong ≔ 𝒪strong

(𝑁1,∞,∞,∞,𝑁2,𝑁3).

In effect, 𝒪𝑁∈Npoly−strong can be characterized by 𝜑𝑁 in the following grammar:

𝜑𝑁 ∶∶= ⊤
∣ ⟨𝛼⟩𝜑𝑁−ê1

∣ ⋀{𝜓𝑁 , 𝜓𝑁 , 𝜓𝑁 …}
𝜓𝑁 ∶∶= ⟨𝛼⟩𝜑𝑁−ê1

∣ ¬⟨𝛼⟩𝜑(𝑁⊓(𝑁2,∞,∞))−ê1−ê3

Figure 4.4 gives names to coordinates that correspond to notions discussed
previously.

bisimulation B
∞, ∞, ∞

𝑘-step bisimulation 𝑘B
𝑘, ∞, ∞

𝑘-nested simulation 𝑘S
∞, ∞, 𝑘 − 1

ready simulation RS
∞, 1, 1

simulation 1S
∞, 0, 0

enabledness E
1, 0, 0

Figure 4.4: Hierarchy of polynomial-time decidable equivalences/preorders.

Except for enabledness, E, all coordinates after unfolding them for Nstrong

are identical to the ones used previously. When one unfolds the coordinate for
enabledness (1, 0, 0) to the original strong system, (1, ∞, ∞, ∞, 0, 0), it dif-
fers from the one previously used, namely, (1, 0, 0, 0, 0, 0). The characterized
language is strictly more expressive, as it contains conjunctions of enabled
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actions (e.g. ⋀{⟨a⟩, ⟨b⟩}), but it is equally distinctive.65 65 lemma Priced_Spectrum.lts.enabledness
_conjunctions_are_neutral

4.2.2 The Bisimulation Energy Game

Let us upgrade the bisimulation game of Definition 2.20 with energies.
The claim is that the resulting game 𝒢B will characterize all equivalences
of the polynomial-time strong spectrum in the sense that 𝑝 ⪯𝒪𝑒

𝑞 for
𝑒 ∈ Npoly−strong precisely if the defender wins 𝒢B from [𝑝, 𝑞] with budget 𝑒.

As we have seen in Subsection 2.4.4, the gamemoves match the distinctive
power of productions in the𝒪⌊B⌋-grammar of Example 2.11. Consequently, we
can count the use of HML constructs in the game. As the game stands, we can
meaningfully count the three dimensions used in Subsection 4.2.1.66 66 We cannot hope to count the other dimen-

sions of Definition 3.7: the bisimulation game
washes away the amount of necessary conjunc-
tions as its HMLhas conjunctions under each ob-
servation, even though they might not be neces-
sary for a distinguishing formula.

We add the computations that happen in the grammar of Definition 4.6 as
energy updates to the bisimulation game and obtain:

Definition 4.7 (Bisimulation Energy Game). For a transition system 𝒮, the
bisimulation energy game 𝒢 𝒮

B is played on the same graph as the bisimulation
game 𝒢𝒮

B (of Definition 2.20), but the moves are weighted by the following
energy updates:

• Attacker swaps are counted as a negation and limit the further obser-
vations to the depth of negative clauses:

[𝑝, 𝑞] ›
min{1,2}, 0, −1

›B [𝑞, 𝑝].

• Simulation challenges count as an observation (using up the budget for
modal depth):

[𝑝, 𝑞] ›−1, 0, 0›B (𝛼, 𝑝′, 𝑞) if 𝑝 𝛼−→ 𝑝′.

• And defender answers come for free:

(𝛼, 𝑝′, 𝑞) ›0, 0, 0›B [𝑝′, 𝑞′] if 𝑞 𝛼−→ 𝑞′.

The first dimension thus bounds how often the attacker may challenge simu-
lation down the road, the third limits how often they may swap sides, and the
middle dimension bounds the amount of simulation moves after a swap.

Example 4.3. Let us label the bisimulation game of Example 2.18 (distinguish-
ing the “trolled philosophers”) with energy updates. Figure 4.5 shows the
game graph, also exhibiting the cheapest formulas with regards to the poly-
nomial spectrum that correspond to attacker winning strategies.

The attacker wins 𝒢B from [Q, T] if they start out with an energy budget
of (2, 2, 2) or above. But if the budget does not dominate this bound, the
attacker loses. For instance, neither (1, ∞, ∞) nor (∞, ∞, 1) is enough. The
second bound implies that the budgets, (∞, 1, 1) and (∞, 0, 0) are won by the
defender as well.

(2, 2, 2)

Figure 4.6: Attacker’s Pareto front for [Q, T] of
the example bisim energy game.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.enabledness_conjunctions_are_neutral%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.enabledness_conjunctions_are_neutral%7Cfact
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[Q, T]

⋀{¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}} ∈ 𝒪poly−strong
(2,2,2)

[T, Q]

⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ 𝒪poly−strong
(2,1,1)

(𝜏, qAB, T)

[qAB, qAB]

[qAB, q3]

⟨a⟩⊤ ∈ 𝒪poly−strong
(1,0,0) (a, q1, q3)

(b, q2, q3)

(𝜏, qAB, Q)

(𝜏, q3, Q)

[q3, qAB]

⋀{¬⟨a⟩⊤} ∈ 𝒪poly−strong
(1,1,1)

min{1,2}, 0, −1

−1, 0, 0

min{1,2}, 0, −1

0,0,0

0,0,0

min{1,2}, 0, −1
min{1,2}, 0, −1

−1, 0, 0
−1, 0, 0

0,0,0

0,0,0

−1, 0, 0

−1, 0, 0

Figure 4.5: The bisimulation energy game of Example 4.3 with energy updates
and implied formulas.

On the game-side, this tells us is that the attacker needs at least two simu-
lation moves (after swaps) and two swaps to tell Q apart from T. Telling apart
T from Q is slightly easier, only requiring one swap (and only one simulation
move after the swap).

But, due to the correspondence of the game to modal formulas and of
the energy updates to the pricing of formulas in the spectrum, the attacker
winning budgets tell us more: They reveal that one needs two observations
and two (or more) negations to distinguish Q from T using formulas from
𝒪⌊B⌋.

Thus, Npoly−strong
Q,T = {𝑁 ∈ Npoly−strong ∣ 𝑁 ≰ (2, 2, 2)} is the solution

for the (polynomial-time strong) spectroscopy problem. Q is preordered to T
by 2-nested simulation, 1-step bisimulation, and all notions below; but distin-
guished by all above, in particular, 3-nested simulation and 2-step bisimula-
tion.

This is in line with the solution we thought of for the original strong spec-
trum in Example 3.6.

4.2.3 Correctness of Characterization

We now prove that the bisimulation energy game indeed characterizes the
equivalences of the polynomial-time strong spectrum. In following chap-
ters, we will prove stronger results for more general games in more detail.
The approach is to generalize the connection between winning attacks and
distinguishing formulas that we have already explored in Lemma 2.10 and
Lemma 2.11 to energies and spectrum.

Definition 4.8 (Strategy Formulas for 𝒢B). The set of strategy formulas for a
game position 𝑔 and a budget 𝑒, StratB(𝑔, 𝑒), in the context of a bisimulation
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energy game 𝒢 𝒮
B is defined inductively by the following rules:

[𝑝, 𝑞] ›−1,0,0›B (𝛼, 𝑝′, 𝑞) 𝑒′ = upd((−1, 0, 0), 𝑒) ∈ Win𝒢B
a ((𝛼, 𝑝′, 𝑞)) 𝜑 ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒′)

(⟨𝛼⟩𝜑) ∈ StratB([𝑝, 𝑞], 𝑒)

∀𝑞′ ∈ Der(𝑞, 𝛼). (𝛼, 𝑝′, 𝑞) ›0,0,0›B [𝑝′, 𝑞′] ∧ 𝑒 ∈ Win𝒢B
a ([𝑝′, 𝑞′]) ∧ 𝜓𝑞′ ∈ StratB([𝑝′, 𝑞′], 𝑒)

(⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒)

[𝑝, 𝑞] ›min{1,2},0,−1›B [𝑞, 𝑝] 𝑒′ = upd((min{1,2}, 0, −1), 𝑒) ∈ Win𝒢B
a ([𝑞, 𝑝]) ⟨𝛼⟩𝜑 ∈ StratB([𝑞, 𝑝], 𝑒′)

(¬⟨𝛼⟩𝜑) ∈ StratB([𝑝, 𝑞], 𝑒)
Effectively, this definition generalizes the construction of distinguishing for-
mulas on 𝒢B we introduced in Lemma 2.10. So the formulas we encountered
before also serve as examples of such strategy formulas.

Lemma 4.1. If 𝑒 ∈ Win𝒢B
a ([𝑝, 𝑞]), then there is 𝜑 ∈ StratB([𝑝, 𝑞], 𝑒) with 𝜑 ∈

𝒪poly−strong
𝑒 , 𝑝 ∈ J𝜑K and 𝑞 ∉ J𝜑K.

Proof. We prove the following, more general, property by induction.

1. If 𝑒 ∈ Win𝒢B
a ([𝑝, 𝑞]), then there is 𝜓 ∈ StratB([𝑝, 𝑞], 𝑒) of form 𝜓 =

⟨𝛼⟩𝜑′ or ¬⟨𝛼⟩𝜑′ with ⋀{𝜓} ∈ 𝒪poly−strong
𝑒 , 𝑝 ∈ J𝜓K and 𝑞 ∉ J𝜓K.

2. If 𝑒 ∈ Win𝒢B
a ((𝛼, 𝑝′, 𝑞)), then there is 𝜑 ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒) of form

𝜑 = ⋀ Ψ with 𝜑 ∈ 𝒪poly−strong
𝑒 , 𝑝′ ∈ J𝜑K and 𝑞 ∉ J⟨𝛼⟩𝜑K.

Proof by induction on the inductive characterizations of attacker winning
budgets Proposition 4.2.

1. Assume 𝑒 ∈ Win𝒢B
a ([𝑝, 𝑞]). This must be due to one of the following

moves:

• Case [𝑝, 𝑞] › ›B [𝑞, 𝑝] with 𝑒′ = upd((min{1,2}, 0, −1), 𝑒) ∈
Win𝒢B

a ([𝑞, 𝑝]). By induction hypothesis on [𝑞, 𝑝], there is
𝜓 ∈ StratB([𝑞, 𝑝], 𝑒′) with ⋀{𝜓} ∈ 𝒪poly−strong

𝑒′ , 𝑞 ∈ J𝜓K and
𝑝 ∉ J𝜓K. Consider the possible forms of 𝜓:
– 𝜓 = ⟨𝛼⟩𝜑′. By Definition 4.8 of StratB, we obtain ¬⟨𝛼⟩𝜑′ ∈

StratB([𝑝, 𝑞], 𝑒). Because of the semantics of HML, ¬⟨𝛼⟩𝜑′

must distinguish 𝑝 from 𝑞. Also, ⋀{¬⟨𝛼⟩𝜑′} ∈ 𝒪poly−strong
𝑒 ,

by the calculations of the grammar in Definition 4.6.
– 𝜓 = ¬⟨𝛼⟩𝜑′. This can only be in StratB([𝑞, 𝑝], 𝑒′) due to 𝜑′

being in StratB([𝑝, 𝑞], upd((min{1,2}, 0, −1), 𝑒′)). Clearly, 𝜑′

must distinguish 𝑝 from 𝑞 and ⋀{𝜑′} ∈ 𝒪poly−strong
𝑒 .

• Case [𝑝, 𝑞] › ›B (𝛼, 𝑝′, 𝑞)with 𝑝 𝛼−→ 𝑝′ and 𝑒′ = upd((−1, 0, 0), 𝑒) ∈
Win𝒢B

a ((𝛼, 𝑝′, 𝑞)). By induction hypothesis on (𝛼, 𝑝′, 𝑞), there
is ⋀ Ψ ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒′) and ⋀ Ψ ∈ 𝒪poly−strong

𝑒′ with
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𝑝′ ∈ J⋀ ΨK and 𝑞 ∉ J⟨𝛼⟩ ⋀ ΨK. By Definition 4.8, we obtain
⟨𝛼⟩ ⋀ Ψ ∈ StratB([𝑝, 𝑞], 𝑒). Due to the semantics of HML and
𝑝 𝛼−→ 𝑝′, 𝑝 ∈ J⟨𝛼⟩ ⋀ ΨK, thus distinguishing 𝑝 from 𝑞. Also,
⟨𝛼⟩ ⋀ Ψ ∈ 𝒪poly−strong

𝑒 as ⋀ Ψ ∈ 𝒪poly−strong
𝑒−ê1

.

2. Assume 𝑒 ∈ Win𝒢B
a ((𝛼, 𝑝′, 𝑞)). This means that 𝑒 suffices for the at-

tacker to win every 𝑞′-move (𝛼, 𝑝′, 𝑞) › ›B [𝑝′, 𝑞′] with 𝑞 𝛼−→ 𝑞′ that
the defender might take, with 𝑒 ∈ Win𝒢B

a ([𝑝′, 𝑞′]). For each 𝑞′, we em-
ploy the induction hypothesis to obtain 𝜓𝑞′ ∈ StratB([𝑝′, 𝑞′], 𝑒) of form
𝜓𝑞′ = ⟨𝛼⟩𝜑′ or ¬⟨𝛼⟩𝜑′ with ⋀{𝜓𝑞′} ∈ 𝒪poly−strong

𝑒 , 𝑝′ ∈ J𝜓𝑞′K and
𝑞′ ∉ J𝜓𝑞′K. By Definition 4.8, (⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒).
By the HML-semantics, (⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) must be true for 𝑝′, and also
taking the semantics of observation, ⟨𝛼⟩(⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) false for 𝑞.
Moreover, (⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) ∈ 𝒪poly−strong

𝑒 by the grammar.

Lemma 4.2. If there is 𝜑 ∈ 𝒪poly−strong
𝑒 with 𝑝 ∈ J𝜑K and 𝑞 ∉ J𝜑K, then

𝑒 ∈ Win𝒢B
a ([𝑝, 𝑞]).

Proof. By induction on the grammar of 𝒪poly−strong
𝑒 .

Consider the cases of 𝜑 ∈ 𝒪poly−strong
𝑒 with 𝑝 ∈ J𝜑K and 𝑞 ∉ J𝜑K.

• 𝜑 = ⊤. This cannot be the case as 𝑞 ∉ J𝜑K and J⊤K = 𝒫.
• 𝜑 = ⟨𝛼⟩𝜑′ with 𝜑′ ∈ 𝒪poly−strong

𝑒−ê1
. As 𝜑 distinguishes 𝑝 from 𝑞, there

must be a 𝑝′ ∈ J𝜑′K such that 𝑝 𝛼−→ 𝑝′ and, for all 𝑞′ ∈ Der(𝑞, 𝛼),
𝑞′ ∉ J𝜑′K. Due to the induction hypothesis, 𝑒− ê1 ∈ Win𝒢B

a ([𝑝′, 𝑞′]) for
all such 𝑞′ ∈ Der(𝑞, 𝛼). Therefore, 𝑒 − ê1 ∈ Win𝒢B

a ((𝛼, 𝑝′, 𝑞)). As the
attacker can move [𝑝, 𝑞] ›−ê1› (𝛼, 𝑝′, 𝑞), this proves 𝑒 ∈ Win𝒢B

a ([𝑝, 𝑞]) by
Proposition 4.2.

• 𝜑 = ⋀{Ψ} one of the 𝜓 ∈ Ψ must be false for 𝑞. Consider the possible
forms of 𝜓:

– Case 𝜓 = ⟨𝛼⟩𝜑′ with 𝜑′ ∈ 𝒪poly−strong
𝑒−ê1

. Then we can apply the
same argument as in the case of 𝜑 = ⟨𝛼⟩𝜑′.

– Case 𝜓 = ¬⟨𝛼⟩𝜑′ with 𝜑′ ∈ 𝒪poly−strong
(𝑒⊓(𝑒2,∞,∞))−ê1−ê3

. Therefore,
⟨𝛼⟩𝜑′ ∈ 𝒪poly−strong

(𝑒⊓(𝑒2,∞,∞))−ê3
distinguishes 𝑞 from 𝑝. This time, we

can employ the same argument as in the case of 𝜑 = ⟨𝛼⟩𝜑′

to obtain that (𝑒 ⊓ (𝑒2, ∞, ∞)) − ê3 ∈ Win𝒢B
a ([𝑞, 𝑝]). The

move [𝑝, 𝑞] ›min{1,2},0,−1›B [𝑞, 𝑝] and upd((min{1,2}, 0, −1), 𝑒) =
(𝑒 ⊓ (𝑒2, ∞, ∞)) − ê3 justify that 𝑒 ∈ Win𝒢B

a ([𝑝, 𝑞]).

Theorem 4.1. 𝑝 ⪯𝒪𝑒
𝑞 for 𝑒 ∈ Npoly−strong precisely if the defender wins 𝒢B

from [𝑝, 𝑞] with budget 𝑒.

Thus, we have established that the bisimulation energy game 𝒢B character-
izes the equivalences of the polynomial-time strong spectrum Npoly−strong. To
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exploit this property to decide equivalences and solve the spectroscopy prob-
lem algorithmically, we need one more ingredient: A decision procedure for
winning budgets in declining energy games.

4.3 Deciding Energy Games

This section is about how to compute which energy budgets are winning for
the attacker (or the defender) at positions of an energy game:

Definition 4.9 (Monotonic Energy Game Winner Problem). In the context of
an energy system (ℰ, ≤) and a finite energy game 𝒢 = (𝐺, 𝐺d, › ›, 𝑢𝑝𝑑),
the energy game winner problem goes:

Input Game position 𝑔 ∈ 𝐺.
Output Winmin

a (𝑔)—the Pareto front of minimal winning budgets for the at-
tacker at 𝑔.

We will show how to solve the problem for energy games with monotonic
updates. To this end, we will adapt the idea of back-propagating how the
defender loses in reachability games from Algorithm 2.1.

The change is that we have to propagate not just attacker wins, but Pareto
fronts of attacker-winning energy levels. For this, we have to “invert” the
energy update functions. But, as we have seen in Example 4.2, our specific
declining energy updates are neither injective nor surjective, and thus cannot
be cleanly inverted.

We will see how to tackle these challenges using Galois connections. For
details, readers are referred to Lemke (2024).

4.3.1 Galois Connections

Galois connections can be thought of as a pair of monotonic functions that in-
vert each other up to their partial ordering relations. Another standard intuition
is that Galois connections couple a concrete and a more abstract domain, and
this is what the variable naming in the following definition alludes to.

Definition 4.10. A Galois connection between two partially ordered sets
(𝐶, ≤𝐶) and (𝐴, ≤𝐴) is a pair of functions 𝛼∶ 𝐶 → 𝐴 and 𝛾 ∶ 𝐴 → 𝐶 such
that, for all 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 :

𝛼(𝑐) ≤𝐴 𝑎 ⟺ 𝑐 ≤𝐶 𝛾(𝑎).

An illustration of the connection property can be seen in Figure 4.7. (The
illustration also illuminates why the 𝛼-function is often referred to as “lower
adjoint“ and 𝛾 as “upper adjoint” of a Galois connection.)

𝑐

≤

𝛾(𝑎)

𝐶

𝛼(𝑐)

≤

𝑎

𝐴

⟺

𝛼

𝛾

Figure 4.7: Visualization of Galois connections
according to Definition 4.10.

Example 4.4. Take the non-negative reals ℝ≥0 as concrete domain and the
natural numbers ℕ as abstract domain. Then, as function 𝛼ℝ ∶ ℝ≥0 → ℕ,
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take flooring, 𝑥 ↦ ⌊𝑥⌋, and for the other direction, the identity idℕ, 𝑛 ↦
𝑛. Clearly, ⌊𝑥⌋ ≤ 𝑛 ⟺ 𝑥 ≤ 𝑛. Therefore, 𝛼ℝ and idℕ form a Galois
connection.

⋮ ⋮

ℝ≥0 ℕ

Figure 4.8: Illustration of the Galois connection
of Example 4.4 between ℝ≥0 and ℕ using ⌊⋅⌋-
function, whose mapping is illustrated by the
gray triangles.

Anymonotonic function naturally induces a Galois-connected abstraction
function.

Lemma 4.3. The following are equivalent:

• 𝛾 ∶ 𝐴 → 𝐶 is a monotonic function, and 𝛼(𝑐) = inf{𝑎 ∣ 𝑐 ≤𝐶 𝛾(𝑎)} for
all 𝑐 ∈ 𝐶 .

• 𝛼 and 𝛾 constitute a Galois connection between 𝐶 and 𝐴.67

67 Proposition 4 of Erné et al. (1993).

Wewill refer to functions derived like 𝛼(𝑐) in Lemma 4.3 as “undo” functions.
We understand them to generalize inverse functions of monotonic functions
as these will always be Galois connected.

Lemma 4.4. If a function 𝑓 ∶ 𝐴 → 𝐶 is surjective and injective, it has a unique
inverse function 𝑓−1 ∶ 𝐶 → 𝐴 such that 𝑓−1 ∘ 𝑓 = id𝐴 and 𝑓 ∘ 𝑓−1 = id𝐶 .

If 𝑓 is monotonic with respect to some partial orders on 𝐶 and 𝐴, then 𝑓−1

and 𝑓 must form a Galois connection.

Proof. Because of injectivity and monotonicity, 𝑓 and 𝑓−1, must be (strictly)
monotonic. Together with the definition of function inversion, we can reason

𝑓(𝑐) ≤𝐴 𝑎 ⟹ 𝑓−1(𝑓(𝑐)) ≤𝐴 𝑓−1(𝑎) ⟹ 𝑐 ≤𝐶 𝑓−1(𝑎)

and
𝑐 ≤𝐶 𝑓−1(𝑎) ⟹ 𝑓(𝑐) ≤𝐴 𝑓(𝑓−1(𝑎)) ⟹ 𝑓(𝑐) ≤𝐴 𝑎.

In the following, we will use a ↺-symbol to label the adjoint functions that
we use to undo energy updates.
Remark 4.3. Definition 3.5 demands monotonicity of our observation lan-
guages for a spectrum, 𝒪𝑁∈N. If we construct an abstraction function as in
Lemma 4.3 to undo the language selection for a set of formulas Φ, the result
would read:

𝛼𝒪(Φ) ∶= inf{𝑁 ∈ N ∣ Φ ⊆ 𝒪𝑁}.
The singleton case of this function exactly matches our expressiveness prices
of Definition 3.6:

expr(𝜑) ∶= inf{𝑁 ∈ N ∣ 𝜑 ∈ 𝒪𝑁}.

4.3.2 The Algorithm

To implement a back-propagation algorithm, we have to assume that we
know a function that undoes energy updates, 𝑢𝑝𝑑↺ ∶ (› ›) → ℰ → ℰ with
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𝑢𝑝𝑑↺(𝑔, 𝑔′)(𝑒′) = inf{𝑒 ∣ 𝑒′ ≤ 𝑢𝑝𝑑(𝑔, 𝑔′)(𝑒)}. That means, we assume that
there is a Galois connection (𝑢𝑝𝑑↺, 𝑢𝑝𝑑) between energies ℰ and the domain
of updates {𝑒 ∈ ℰ ∣ 𝑢𝑝𝑑(𝑒) ≠ ⊥}.

Algorithm 4.1 can be used to compute the minimal attacker winning bud-
gets.

1 def compute_winning_budgets(𝒢 = (𝐺, 𝐺d, › ›, 𝑢𝑝𝑑), 𝑢𝑝𝑑↺) ∶
2 attacker_win ∶= [𝑔 ↦ ∅ ∣ 𝑔 ∈ 𝐺]
3 todo ∶= {𝑔 ∈ 𝐺d ∣ 𝑔 ›/ ›}
4 while todo ≠ ∅∶
5 g ∶= some todo
6 todo ∶= todo \ {g}
7 if g ∈ 𝐺a ∶
8 new_attacker_win ∶= Min({𝑢𝑝𝑑↺(g, 𝑔′)(e′)

∣ g › › 𝑔′ ∧ e′ ∈ attacker_win[𝑔′]})
9 else :

10 new_attacker_win ∶= {0}
11 for g′ ∈ (g › › ⋅) ∶
12 new_attacker_win ∶= Min({sup(𝑒a, 𝑢𝑝𝑑↺(g, 𝑔′)(e′)) ∣

𝑒a ∈ new_attacker_win ∧ g › › 𝑔′ ∧ e′ ∈ attacker_win[𝑔′]})
13 if new_attacker_win ≠ attacker_win[g] ∶
14 todo ∶= todo ∪ (⋅ › › g)
15 Winmin

a ∶= attacker_win
16 return Winmin

a

Algorithm 4.1: Algorithm determining the minimal attacker winning budgets
Winmin

a of an energy game 𝒢 .

The algorithm can be understood as a generalization of Algorithm 2.1, but
as positions might need to be revisited more than once, we have to depart
from the option counting trick. Whenever we learn about a new minimal
energy for the attacker to win, we schedule a position to be (re-)visited. The
chain-reaction starts at defender positions with no outgoing moves (lines 3
and 10). By 0, we denote the minimal element of the energy system ℰ.

We illustrate the algorithm by running it on the simple energy game of
Example 4.1.

Example 4.5. Let us execute Algorithm 4.1 on the ℕ2-game of Example 4.1.
The game graph, labeled by the minimal attacker winning energies we find,
is reproduced in Figure 4.9.
What we need for the algorithm to run, is some undo function 𝑢𝑝𝑑↺ ∶ (› ›
) → ℰ → ℰ. We define it as:

𝑢𝑝𝑑↺(𝑒′) ∶= sup(𝑒 − 𝑢⃗, 0)

We list the steps of the computation in Example 4.5, and the mechanics behind
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g1

(0, 2), (2, 1)

g2

(0, 2)

g3

(1, 1)

g4

(1, 1)

g5

(0, 1)

g6

(0, 0)

0, 0

−1, 0

−2, −1
+2, −1

0, 0

0, 0

−1, 0

0, −1

Figure 4.9: Computed winning budgets Winmin
a on the game in Example 4.5.

them below.

Table 4.1: Steps while solving the game in Example 4.5.

step g new_attacker_win todo

0 – g𝑖 ↦ ∅ g6
1 g6 {(0, 0)} g4, g5
2 g4 ∅ g5
3 g5 {(0, 1)} g4
4 g4 {(1, 1)} g1, g2, g3
5 g1 {(3, 2)} g2, g3
6 g2 {(0, 2)} g3, g1
7 g3 {(1, 1)} g1
8 g1 {(0, 2), (2, 1)} ∅

g5 ∶ (0, 1) (1, 0)upd⟲

g6 ∶ (0, 0)

(1, 1)

Figure 4.10: Multiplicative combination (dashed
red) of successor Pareto fronts (black) at de-
fender position g4 in step 4.

g2

(3, 2)

upd⟲

g3, g4 ∶ (1, 1)

(0, 2) (2, 1)

Figure 4.11: Additive combination (dashed red)
of successor Pareto fronts (black) at attacker po-
sition g1 in step 8.

0. The algorithm begins with g6 in the todo-set as this is the only position
where the defender is stuck.

1. Updating the defender node g6 ∈ 𝐺d, we set it its minimal attacker-
winning budget to 0. This means that the attacker wins here with any
budget. As there has been a change, both predecessors g4 and g5 are
added to the todo. (Their order is undefined; for the sake of the simu-
lation we will always pick the first positions from the todo.)

2. Updating g4 ∈ 𝐺d finds no attacker wins so far because one successor
attacker_win[g5] = ∅.

3. g4 ∈ 𝐺a is updated with the 𝑢𝑝𝑑↺((0, −1))((0, 0)) = sup((0, 0) −
(0, −1), 0) = (0, 1). This places g4 in todo again.

4. Now, we can find attacker winning budgets for g4 ∈ 𝐺d: The two
successor options (after undo-update) are (0, 1) and (1, 0), as depicted
in Figure 4.10. The unless the attacker at least arrives with energy
sup((0, 1), (1, 0)) = (1, 1), the defender has a way of winning. Effec-
tively, this amounts to intersecting attacker winning budgets of possible
successor positions.

5. For g1 ∈ 𝐺a, it suffices to know a winning budget for one
successor. So we determine as a preliminary winning budget
𝑢𝑝𝑑↺((−2, −1))((1, 1)) = (3, 2).

6. g2 ∈ 𝐺a also derives its winning budget from (1, 1). But (1, 1) −
(2, −1) = (−1, 2) would be outside the possible energy levels the at-
tacker could carry here and is thus sup-ed into ℕ2, yielding new win
(0, 2).

7. g3 ∈ 𝐺a just propagates (1, 1) from g4.
8. Revisiting g1 ∈ 𝐺a, we can now combine the three Pareto-fronts of its

successors as illustrated in Figure 4.11 as Min{(0, 2), (2, 1), (3, 4)} =
{(0, 2), (2, 1)}. This operation corresponds to taking the union of the
three sets of attacker winning budgets. The previous minimal budget
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(3, 4) of step 5 is thus superseded. As todo is empty, the algorithm
terminates.

Theorem 4.2. Assume energies form a well-founded bounded ⊔-semi-lattice
(ℰ, ≤). Given a finite-state energy game 𝒢 = (𝐺, 𝐺d, › ›, 𝑢𝑝𝑑) with
monotonic 𝑢𝑝𝑑↺-functions for all moves and with computable undo function
𝑢𝑝𝑑↺(𝑔, 𝑔′)(𝑒′) = min{𝑒 ∣ 𝑒′ ≤ 𝑢𝑝𝑑(𝑔, 𝑔′)(𝑒)}, Algorithm 4.1 computes
the Pareto front of minimal attacker winning budgets, solving the monotonic
energy game winner problem (Definition 4.9).

Proof. Algorithm 4.1 is a work-list variant of a fixed-point iteration comput-
ing the least fixed point of attacker winning budgets Wina according to the
inductive characterization of Proposition 4.2.

The “least” here refers to the size of the Wina-sets characterized by the
Winmin

a -Pareto front.
A detailed proof, employing Kleene’s fixed point theorem, can be found in

Lemke (2024). Theorem 5 of Lemke (2024) refers to a variant of Algorithm 4.1,
where all game positions are updated simultaneously in each iteration, which
aligns more directly with the underlying functor. As is common for graph
algorithms, Algorithm 4.1 with updates of single vertices whose neighbor-
hood has changed computes the same result, and usually in a more efficient
manner.

4.3.3 Complexity

Thanks to Lemke (2024), we can name quite precise bounds for the running
time of the algorithm in terms of size of the game and shape of the energy
lattice.

Definition 4.11. Thewidth, wdh𝐵(𝑏), of a (semi-)lattice (𝐵, ≤) below a point 𝑏
is defined as the maximal size of anti-chains 𝐵′ ⊆ ↓ {𝑏}. (Cf. Definition 3.4.)

The height, hgt𝐵(𝑏), below 𝑏 is defined as the size of the maximal size of
chains 𝐵′ ⊆ ↓ {𝑏}.

Theorem 4.3. Consider the following parameters of an energy game problem
on 𝒢 = (𝐺, 𝐺d, › ›, 𝑢𝑝𝑑) where the energies at least form a well-founded
bounded ⊔-semi-lattice (ℰ, ≤):

• 𝑡sup, time to calculate the supremum between two elements of ℰ,
• 𝑡≤, time to compare two elements of ℰ,
• 𝑡𝑢𝑝𝑑↺ , time to compute 𝑢𝑝𝑑↺ on an energy,
• 𝑒𝒢, the highest energy that can be achieved by applying permutations of

𝑢𝑝𝑑↺(⋅) to 0 for |𝐺| − 1 times.
• 𝑜› ›, the out-degree of the game graph › ›.

Then, Algorithm 4.1 computes the minimal attacker winning budgets in

O((|𝐺|+hgtℰ(𝑒𝒢)) ⋅ |𝐺| ⋅ 𝑜› › ⋅ (wdhℰ(𝑒𝒢))2 ⋅ (𝑡𝑢𝑝𝑑↺ +𝑡sup +wdhℰ(𝑒𝒢) ⋅ 𝑡≤)).



4.3. Deciding Energy Games 61

If 𝑢𝑝𝑑↺ is strictly declining, then the following suffices:

O(|𝐺|2 ⋅ 𝑜› › ⋅ (wdhℰ(𝑒𝒢))2 ⋅ (𝑡𝑢𝑝𝑑↺ + 𝑡sup + wdhℰ(𝑒𝒢) ⋅ 𝑡≤)).

In both cases, the algorithm needs O(|𝐺|⋅wdhℰ(𝑒𝒢)⋅𝑁) space to store the Pareto
fronts.

Proof. As in Theorem 4.2, we refer to Lemke (2024) for a very detailed proof,
where the corresponding fact is proved as Theorem 7.

TODO: Add a proof sketch regardless.

4.3.4 Solving Declining Energy Games

Let us instantiate the previous two subsections to declining energy games. All
we have to do is instantiate 𝑢𝑝𝑑↺ to obtain an algorithm and think about the
structure of the energies to tell its complexity.

Definition 4.12. The undo-update function upd↺ on an 𝑁 -dimensional de-
clining energy game is defined component-wise for 𝑘 ∈ {1…𝑁} as:

(upd↺(𝑢, 𝑒′))𝑘 ∶= max( {𝑒′
𝑘 − 𝑢𝑘 ∣ 𝑢𝑘 ∈ {0, −1}}

∪ {𝑒′
𝑗 ∣ ∃𝐷. 𝑢𝑗 = min𝐷 ∧ 𝑘 ∈ 𝐷}).

TODO: Example

Lemma 4.5. For all updates 𝑢 ∈ Up, upd↺(𝑢, ⋅) and upd(𝑢, ⋅) form a Galois
connection on the domain dom(𝑢).

Proof. As upd(𝑢, ⋅) is monotonic, all that needs to be shown according to
Lemma 4.3, is that upd↺(𝑢, 𝑒′) = min{𝑒 ∣ 𝑒′ ≤ upd(𝑢, 𝑒)}.

• Soundness: upd↺(𝑢, 𝑒′) ∈ {𝑒 ∣ 𝑒′ ≤ upd(𝑢, 𝑒)}. This boils down to
showing 𝑒′

𝑘 ≤ (upd(𝑢, upd↺(𝑢, 𝑒′)))𝑘. Consider the cases of 𝑢𝑘.

– Case 𝑢𝑘 ∈ {0, −1}. Then, we have to show 𝑒′
𝑘 ≤ upd↺(𝑢, 𝑒′)+𝑢𝑘.

Due to upd↺ being increasing, this must be the case as 𝑒′
𝑘 ≤ 𝑒′

𝑘 +
𝑢𝑘.

– Case there is 𝐷 such that 𝑢𝑘 = min𝐷 and 𝑘 ∈ 𝐷. Then, by defini-
tion of min-updates, we have to show 𝑒′

𝑘 ≤ min{(upd↺(𝑢, 𝑒′))𝑗 ∣
𝑗 ∈ 𝐷}, that is, 𝑒′

𝑘 ≤ upd↺(𝑢, 𝑒′)𝑗 for all 𝑗 ∈ 𝐷. We do so by con-
tradiction: Assume there were a 𝑗 where this ordering does not
hold, meaning 𝑒′

𝑘 > upd↺(𝑢, 𝑒′)𝑗. As 𝑘 ∈ 𝐷, this is impossible
due to the definition of upd↺ in terms of max.

• Minimality: For all 𝑒′ ≤ upd(𝑢, 𝑒), we show upd↺(𝑢, 𝑒′) ≤ 𝑒. More
specifically, (upd↺(𝑢, 𝑒′))𝑘 ≤ 𝑒𝑘. Let us define 𝑑′ ∶= max{𝑒′

𝑗 ∣
∃𝐷. 𝑢𝑗 = min𝐷 ∧ 𝑘 ∈ 𝐷}. Consider the cases of 𝑢𝑘 ∈ Up.
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– Case 𝑢𝑘 ∈ {0, −1} and 𝑒′
𝑘 − 𝑢𝑘 ≥ 𝑑′. Then 𝑒′

𝑘 ≤ (upd(𝑢, 𝑒))𝑘 =
𝑒𝑘 + 𝑢𝑘, implying 𝑒′

𝑘 − 𝑢𝑘 ≤ (upd(𝑢, 𝑒))𝑘 = 𝑒𝑘. By definition,
(upd↺(𝑢, 𝑒′))𝑘 = max(𝑒′

𝑘 − 𝑢𝑘, 𝑑′). As 𝑒′
𝑘 − 𝑢𝑘 ≥ 𝑑′, we can

connect to the previous inequality, getting (upd↺(𝑢, 𝑒′))𝑘 = 𝑒′
𝑘 −

𝑢𝑘 ≤ 𝑒𝑘.
– Otherwise, (upd↺(𝑢, 𝑒′))𝑘 = 𝑑′. We show 𝑑′ ≤ 𝑒𝑘 by contradic-

tion. Assume it were the case that 𝑑′ > 𝑒𝑘. For this to be true
there would need to be 𝑗 and 𝐷 such that 𝑢𝑗 = min𝐷, 𝑘 ∈ 𝐷,
and 𝑒′

𝑗 ≥ 𝑑′ > 𝑒𝑘. By definition of min-update at 𝑗, we calcu-
late (upd(𝑢, 𝑒))𝑗 ≤ 𝑒𝑘 < 𝑒′

𝑗. But this would contradict the global
assumption that 𝑒′ ≤ upd(𝑢, 𝑒).

Lemma 4.6. Algorithm 4.1 solves the energy game problem on an 𝑁 -
dimensional declining energy game 𝒢 = (𝐺, 𝐺d, › ›, 𝑤) in time

O(𝑜› › ⋅ |𝐺|2⋅𝑁 ⋅ (𝑁2 + |𝐺|𝑁−1 ⋅ 𝑁))

and space O(|𝐺|𝑁 ⋅ 𝑁).
Proof. For declining updates, we instantiate the second case of Theorem 4.3:

O(|𝐺|2 ⋅ 𝑜› › ⋅ (wdhℰ(𝑒𝒢))2 ⋅ (𝑡𝑢𝑝𝑑↺ + 𝑡sup + wdhℰ(𝑒𝒢) ⋅ 𝑡≤)).

For declining energy games as defined in Definition 4.5, we can fill in several
blanks:

• 𝑡sup, the time to calculate the supremum between two elements of En is
in O(𝑁),

• 𝑡≤, time to compare two elements of En is in O(𝑁),
• 𝑡𝑢𝑝𝑑↺ , time to compute upd↺ on an energy is in O(𝑁2),
• 𝑒𝒢, the highest energy that can be achieved by applying permutations
of upd↺ to 0 for |𝐺| − 1 times, is the 𝑁 -ary vector (|𝐺| − 1, …, |𝐺| − 1),

• wdhEn(𝑒𝒢), the widest anti-chain under 𝑒𝒢, can be boundedO(|𝐺|𝑁−1).
This yields:

O(|𝐺|2 ⋅ 𝑜› › ⋅ (wdhEn(𝑒𝒢))2 ⋅ (𝑡𝑢𝑝𝑑↺ + 𝑡sup + wdhEn(𝑒𝒢) ⋅ 𝑡≤))
= O(|𝐺|2 ⋅ 𝑜› › ⋅ (|𝐺|𝑁−1)2 ⋅ (𝑁2 + 𝑁 + |𝐺|𝑁−1 ⋅ 𝑁))
= O(𝑜› › ⋅ |𝐺|2𝑁+2−2 ⋅ (𝑁2 + |𝐺|𝑁−1 ⋅ 𝑁))
= O(𝑜› › ⋅ |𝐺|2𝑁 ⋅ (𝑁2 + |𝐺|𝑁−1 ⋅ 𝑁))

For space complexity, we obtain:

O(|𝐺| ⋅ wdhEn(𝑒𝒢) ⋅ 𝑁)
O(|𝐺| ⋅ |𝐺|𝑁−1 ⋅ 𝑁)
O(|𝐺|𝑁 ⋅ 𝑁)
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Definition 4.13. For 𝑁 -dimensional energy games, we define the flattened
energies as Ên ∶= ({0, 1, ∞})𝑁 . A standard energy 𝑒 ∈ En is cast to Ên by ̂𝑒
where

( ̂𝑒)𝑘 ∶= {𝑒𝑘 if 𝑒𝑘 ≤ 1
∞ otherwise

.

We denote as flattened monotonic energy game winner problem the variant
of Definition 4.9 that outputs

Ŵinmin
a (𝑔) ∶= Min(Wina(𝑔) ∩ Ên).

Clearly, Algorithm 4.1 can too be used to solve the flattened version of the
problem by adapting upd↺ to represent all components above 1 by ∞. Ef-
fectively, this decouples the size of Pareto fronts from the game size. In this
instance, Lemma 4.6 becomes:

Lemma 4.7. Algorithm 4.1 solves the flattened energy game problem on an 𝑁 -
dimensional declining energy game 𝒢 = (𝐺, 𝐺d, › ›, 𝑤) in time

O(𝑜› › ⋅ |𝐺|2𝑁 ⋅ (𝑁2 + 3𝑁−1 ⋅ 𝑁))

and in space O(|𝐺| ⋅ 3𝑁−1 ⋅ 𝑁).
Thebounds we have established are exponential with regard to the dimension-
ality 𝑁 . But in our use case, we care for energy games of fixed dimensionality.
The time bounds are polynomial with regard to game graph size. The space
bounds behave similarly, but in the flattened variant fixed energy makes the
space usage even drop to be linear in terms of game graph size.

4.3.5 Polynomial Spectroscopy Complexity

We have gathered enough material to have this section prove that the spec-
troscopy problem for the polynomial-time strong spectrum is indeed solvable
in polynomial time, thus justifying the name we chose for the spectrum.

Theorem 4.4. Given a transition system 𝒮, the spectroscopy problem for the
Npoly−strong-spectrum can be solved in polynomial time with respect to the size
of 𝒮.

Proof. Theorem 4.1 has established that we can solve the spectroscopy
problem for the Npoly−strong-spectrum by deciding the winning budgets of the
bisimulation energy game 𝒢B on 𝒮 = (𝒫,Act, −→). Thus, all that remains to
be done is to instantiate the winning budget complexity of Lemma 4.6 for the
case 𝑁 = 3 with the size of 𝒢B according to Definition 4.7.

The amount of attacker positions is bounded by |𝒫|2. These positions can
initiate up to |𝒫| ⋅ ∣−→∣ simulation challenges, leading to a similarly-bounded
amount of defender positions, which again can be left by |𝒫| ⋅ ∣−→∣ moves.

In total, this amounts to 𝑜› ›B
in O(|𝒫| ⋅ ∣−→∣) and to ∣𝐺B∣ in O(|𝒫|2).
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Inserting the parameters in the time bounds of Lemma 4.6 yields:

𝑂( 𝑜› › ⋅ |𝐺|2𝑁 ⋅ (𝑁2 + |𝐺|𝑁−1 ⋅ 𝑁) )
= 𝑂( (|𝒫| ⋅ ∣−→∣) ⋅ (|𝒫|2)2⋅3 ⋅ (32 + (|𝒫|2)3−1 ⋅ 3) )
= 𝑂( (|𝒫| ⋅ ∣−→∣) ⋅ |𝒫|12 ⋅ |𝒫|4 )
= 𝑂( |𝒫|17 ⋅ ∣−→∣ ).

For space complexity, the approach arrives atO((|𝒫|⋅∣−→∣)3). The bound drops
to O((|𝒫| ⋅ ∣−→∣)) in the flattened variant of Lemma 4.7.

4.4 Discussion

This chapter has shown how to solve the spectroscopy problem for the
Npoly−strong spectrum in polynomial time, thereby deciding all its preorders
and equivalences at once.

The core ingredient has been to characterize the spectrum’s observation
languages through an energy game (Note 5, Theorem 4.1) derived from the
bisimulation game. The Pareto front view is slightly more general than other
characteristic games, which Hüttel & Shukla (1996) for instance use to estab-
lish polynomial upper bounds individually for simulation-like notions.

To compute the Pareto fronts, we use a fixed point algorithm (Note 6,
Algorithm 4.1). It can be thought of as a generalization of well-known ways
to compute shortest distances in graphs:
Remark 4.4. The energy game problem of this chapter can be seen as a gen-
eralization of the shortest path problem on directed graphs to account for two
players as well as for much more general distances and cost functions.

To see how, consider energy games on (ℤ, ≤) where only deadlock posi-
tions belong to the defender andwhere all updates constitute one-dimensional
integer addition. Then, 𝑒 ∈ Winmin

a (𝑔) iff 𝑒 is the length of a shortest path from
𝑔 to some defender position (where negative (−𝑧)-updates stand for what is
usually written as a positive edge weight 𝑧 for graphs). In this instance, Algo-
rithm 4.1 behaves like the well-known Bellman–Ford algorithm for shortest
paths.
Algorithm 4.1 contains relevant generalizations and practical improvements
compared to the one originally used in Bisping (2023a). Most importantly, the
declining energy version loses a dimension of exponentiality. For the poly-
nomial equivalences we arrive at a reasonably polynomial complexity for the
spectroscopy instantiation, including reasonable space complexity for a flat-
tened energy lattice.

Knowing that parts of the strong spectrum are PSPACE-hard, the algo-
rithmic complexity indirectly proves that the bisimulation game cannot be
used to characterize the whole spectrum. (Unless the polynomial hierarchy
miraculously collapses to PSPACE = P.)
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Thus, “we’re gonna need a bigger boat” game, at least exponentially-sized,
to also cover PSPACE-hard notions.



5 Spectroscopy of the
Strong Equivalence
Spectrum

Todo

This section will be filled with contents from Process Equivalence Prob-
lems as Energy Games.

5.1 The Strong Spectroscopy Game

5.1.1 The Game

Definition 5.1. For a system 𝒮 = (𝒫,Act, −→), the 6-dimensional spectroscopy
energy game 𝒢𝒮

△[𝑔0, 𝑒0] = (𝐺, 𝐺d, › ›, 𝑤, 𝑔0, 𝑒0) consists of

• attacker positions [𝑝, 𝑄]a ∈ 𝐺a,
• attacker clause positions [𝑝, 𝑞]∧

a ∈ 𝐺a,
• defender conjunction positions (𝑝, 𝑄, 𝑄∗)d ∈ 𝐺d,

where 𝑝, 𝑞 ∈ 𝒫 and 𝑄, 𝑄∗ ∈ 2𝒫, and six kinds of moves:

observation [𝑝, 𝑄]a ›−1,0,0,0,0,0› [𝑝′, 𝑄′]a if 𝑝 𝛼−→ 𝑝′, 𝑄 𝛼−→ 𝑄′,
conjunction [𝑝, 𝑄]a ›0,0,0,0,0,0› (𝑝, 𝑄 \ 𝑄∗, 𝑄∗)d if 𝑄∗ ⊆ 𝑄,
conj. revival (𝑝, 𝑄, 𝑄∗)d ›min{1,3},−1,0,0,0,0› [𝑝, 𝑄∗]a if 𝑄∗ ≠ ∅,
conj. answer (𝑝, 𝑄, 𝑄∗)d ›0,−1,0,min{3,4},0,0› [𝑝, 𝑞]∧

a if 𝑞 ∈ 𝑄,
positive conjunct [𝑝, 𝑞]∧

a ›min{1,4},0,0,0,0,0› [𝑝, {𝑞}]a, and
negative conjunct [𝑝, 𝑞]∧

a ›min{1,5},0,0,0,0,−1› [𝑞, {𝑝}]a if 𝑝 ≠ 𝑞.

A schematic representation can be seen in Figure 5.1.

Lemma 5.1. 𝑝0 and 𝑞0 are bisimilar iff the defender wins 𝒢△ from [𝑝0, {𝑞0}]a
with 𝑒0 for every initial energy budget 𝑒0, that is, if (∞, ∞, ∞, ∞, ∞, ∞) ∈
Winmax

d ([𝑝0, {𝑞0}]a).68 68 Proof in Lemma 1 of Bisping (2023b).

https://doi.org/10.1007/978-3-031-37706-8_5
https://doi.org/10.1007/978-3-031-37706-8_5
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[𝑝, 𝑄]a (𝑝, 𝑄 ∖ 𝑄∗, 𝑄∗)d

[𝑝, 𝑞]∧
a [𝑞, {𝑝}]a

[𝑝, {𝑞}]a

[𝑝′, 𝑄′]a

𝑝 𝛼−→ 𝑝′

𝑄 𝛼−→ 𝑄′

−1, 0, 0, 0, 0, 0

𝑄∗ ⊆ 𝑄
0, 0, 0, 0, 0, 0

𝑞 ∈ 𝑄 ∖ 𝑄∗
0, −1, 0, min{3,4}, 0, 0 min{1,4}, 0, 0, 0, 0, 0

min{1,5}, 0, 0, 0, 0, −1

𝑝′ = 𝑝
𝑄′ = 𝑄∗ ≠ ∅

min{1,3}, −1, 0, 0, 0, 0

Figure 5.1: Schematic spectroscopy game 𝒢△ of Definition 5.1.

5.1.2 Correctness

5.1.3 Complexity

5.2 More Specific Games

5.2.1 The Clever Game

5.2.2 Instance Games

5.3 Discussion

• Mention option of non-perfect attacker information as alternative to
subset construction

• Difference to Bisping et al. (2022):

– Lower exponentiality in conjunctions
– No explicit construction of formulas



6 Spectroscopy for the
Weak Silent-Step
Spectrum

Todo

This section will be filled, once the journal version of One Energy Game
for the Spectrum between Branching Bisimilarity and Weak Trace Se-
mantics is ready.

6.1 Lifting to the Spectrum of Stable Equivalences

6.1.1 Stable Behavioral Equivalences

6.1.2 The Adapted Spectroscopy Game

6.2 The Weak Spectrum

6.2.1 Special Weak Equivalences

6.2.2 HML with Silent Behavior

6.2.3 Expressing the Weak Spectrum with Quantities

6.3 The Weak Spectroscopy Game

6.3.1 The Game

6.3.2 Correctness

6.4 Discussion

• Mention to add back in strong observations

https://doi.org/10.4204/EPTCS.412.6
https://doi.org/10.4204/EPTCS.412.6
https://doi.org/10.4204/EPTCS.412.6


7 Implementations

7.1 Prototype Implementation: equiv.io

7.2 GPU Implementation: gpuequiv

Vogel (2024)

7.3 Other Implementations

7.3.1 Computer Game: The Spectroscopy Invaders

Trzeciakiewicz (2021)

7.3.2 CAAL Extension

Ozegowski (2023) mention Timo



8 Conclusion

There is a rich body of work on process equivalence checking and refinement
checking for programs and specifications. This thesis argues that most of it
can be viewed through one unified lense of finding differences in behavior.
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