Theory Lattices_Big
section ‹Big infimum (minimum) and supremum (maximum) over finite (non-empty) sets›
theory Lattices_Big
imports Groups_Big Option
begin
subsection ‹Generic lattice operations over a set›
subsubsection ‹Without neutral element›
locale semilattice_set = semilattice
begin
interpretation comp_fun_idem f
by standard (simp_all add: fun_eq_iff left_commute)
definition F :: "'a set ⇒ 'a"
where
eq_fold': "F A = the (Finite_Set.fold (λx y. Some (case y of None ⇒ x | Some z ⇒ f x z)) None A)"
lemma eq_fold:
assumes "finite A"
shows "F (insert x A) = Finite_Set.fold f x A"
proof (rule sym)
let ?f = "λx y. Some (case y of None ⇒ x | Some z ⇒ f x z)"
interpret comp_fun_idem "?f"
by standard (simp_all add: fun_eq_iff commute left_commute split: option.split)
from assms show "Finite_Set.fold f x A = F (insert x A)"
proof induct
case empty then show ?case by (simp add: eq_fold')
next
case (insert y B) then show ?case by (simp add: insert_commute [of x] eq_fold')
qed
qed
lemma singleton [simp]:
"F {x} = x"
by (simp add: eq_fold)
lemma insert_not_elem:
assumes "finite A" and "x ∉ A" and "A ≠ {}"
shows "F (insert x A) = x ❙* F A"
proof -
from ‹A ≠ {}› obtain b where "b ∈ A" by blast
then obtain B where *: "A = insert b B" "b ∉ B" by (blast dest: mk_disjoint_insert)
with ‹finite A› and ‹x ∉ A›
have "finite (insert x B)" and "b ∉ insert x B" by auto
then have "F (insert b (insert x B)) = x ❙* F (insert b B)"
by (simp add: eq_fold)
then show ?thesis by (simp add: * insert_commute)
qed
lemma in_idem:
assumes "finite A" and "x ∈ A"
shows "x ❙* F A = F A"
proof -
from assms have "A ≠ {}" by auto
with ‹finite A› show ?thesis using ‹x ∈ A›
by (induct A rule: finite_ne_induct) (auto simp add: ac_simps insert_not_elem)
qed
lemma insert [simp]:
assumes "finite A" and "A ≠ {}"
shows "F (insert x A) = x ❙* F A"
using assms by (cases "x ∈ A") (simp_all add: insert_absorb in_idem insert_not_elem)
lemma union:
assumes "finite A" "A ≠ {}" and "finite B" "B ≠ {}"
shows "F (A ∪ B) = F A ❙* F B"
using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps)
lemma remove:
assumes "finite A" and "x ∈ A"
shows "F A = (if A - {x} = {} then x else x ❙* F (A - {x}))"
proof -
from assms obtain B where "A = insert x B" and "x ∉ B" by (blast dest: mk_disjoint_insert)
with assms show ?thesis by simp
qed
lemma insert_remove:
assumes "finite A"
shows "F (insert x A) = (if A - {x} = {} then x else x ❙* F (A - {x}))"
using assms by (cases "x ∈ A") (simp_all add: insert_absorb remove)
lemma subset:
assumes "finite A" "B ≠ {}" and "B ⊆ A"
shows "F B ❙* F A = F A"
proof -
from assms have "A ≠ {}" and "finite B" by (auto dest: finite_subset)
with assms show ?thesis by (simp add: union [symmetric] Un_absorb1)
qed
lemma closed:
assumes "finite A" "A ≠ {}" and elem: "⋀x y. x ❙* y ∈ {x, y}"
shows "F A ∈ A"
using ‹finite A› ‹A ≠ {}› proof (induct rule: finite_ne_induct)
case singleton then show ?case by simp
next
case insert with elem show ?case by force
qed
lemma hom_commute:
assumes hom: "⋀x y. h (x ❙* y) = h x ❙* h y"
and N: "finite N" "N ≠ {}"
shows "h (F N) = F (h ` N)"
using N proof (induct rule: finite_ne_induct)
case singleton thus ?case by simp
next
case (insert n N)
then have "h (F (insert n N)) = h (n ❙* F N)" by simp
also have "… = h n ❙* h (F N)" by (rule hom)
also have "h (F N) = F (h ` N)" by (rule insert)
also have "h n ❙* … = F (insert (h n) (h ` N))"
using insert by simp
also have "insert (h n) (h ` N) = h ` insert n N" by simp
finally show ?case .
qed
lemma infinite: "¬ finite A ⟹ F A = the None"
unfolding eq_fold' by (cases "finite (UNIV::'a set)") (auto intro: finite_subset fold_infinite)
end
locale semilattice_order_set = binary?: semilattice_order + semilattice_set
begin
lemma bounded_iff:
assumes "finite A" and "A ≠ {}"
shows "x ❙≤ F A ⟷ (∀a∈A. x ❙≤ a)"
using assms by (induct rule: finite_ne_induct) simp_all
lemma boundedI:
assumes "finite A"
assumes "A ≠ {}"
assumes "⋀a. a ∈ A ⟹ x ❙≤ a"
shows "x ❙≤ F A"
using assms by (simp add: bounded_iff)
lemma boundedE:
assumes "finite A" and "A ≠ {}" and "x ❙≤ F A"
obtains "⋀a. a ∈ A ⟹ x ❙≤ a"
using assms by (simp add: bounded_iff)
lemma coboundedI:
assumes "finite A"
and "a ∈ A"
shows "F A ❙≤ a"
proof -
from assms have "A ≠ {}" by auto
from ‹finite A› ‹A ≠ {}› ‹a ∈ A› show ?thesis
proof (induct rule: finite_ne_induct)
case singleton thus ?case by (simp add: refl)
next
case (insert x B)
from insert have "a = x ∨ a ∈ B" by simp
then show ?case using insert by (auto intro: coboundedI2)
qed
qed
lemma subset_imp:
assumes "A ⊆ B" and "A ≠ {}" and "finite B"
shows "F B ❙≤ F A"
proof (cases "A = B")
case True then show ?thesis by (simp add: refl)
next
case False
have B: "B = A ∪ (B - A)" using ‹A ⊆ B› by blast
then have "F B = F (A ∪ (B - A))" by simp
also have "… = F A ❙* F (B - A)" using False assms by (subst union) (auto intro: finite_subset)
also have "… ❙≤ F A" by simp
finally show ?thesis .
qed
end
subsubsection ‹With neutral element›
locale semilattice_neutr_set = semilattice_neutr
begin
interpretation comp_fun_idem f
by standard (simp_all add: fun_eq_iff left_commute)
definition F :: "'a set ⇒ 'a"
where
eq_fold: "F A = Finite_Set.fold f ❙1 A"
lemma infinite [simp]:
"¬ finite A ⟹ F A = ❙1"
by (simp add: eq_fold)
lemma empty [simp]:
"F {} = ❙1"
by (simp add: eq_fold)
lemma insert [simp]:
assumes "finite A"
shows "F (insert x A) = x ❙* F A"
using assms by (simp add: eq_fold)
lemma in_idem:
assumes "finite A" and "x ∈ A"
shows "x ❙* F A = F A"
proof -
from assms have "A ≠ {}" by auto
with ‹finite A› show ?thesis using ‹x ∈ A›
by (induct A rule: finite_ne_induct) (auto simp add: ac_simps)
qed
lemma union:
assumes "finite A" and "finite B"
shows "F (A ∪ B) = F A ❙* F B"
using assms by (induct A) (simp_all add: ac_simps)
lemma remove:
assumes "finite A" and "x ∈ A"
shows "F A = x ❙* F (A - {x})"
proof -
from assms obtain B where "A = insert x B" and "x ∉ B" by (blast dest: mk_disjoint_insert)
with assms show ?thesis by simp
qed
lemma insert_remove:
assumes "finite A"
shows "F (insert x A) = x ❙* F (A - {x})"
using assms by (cases "x ∈ A") (simp_all add: insert_absorb remove)
lemma subset:
assumes "finite A" and "B ⊆ A"
shows "F B ❙* F A = F A"
proof -
from assms have "finite B" by (auto dest: finite_subset)
with assms show ?thesis by (simp add: union [symmetric] Un_absorb1)
qed
lemma closed:
assumes "finite A" "A ≠ {}" and elem: "⋀x y. x ❙* y ∈ {x, y}"
shows "F A ∈ A"
using ‹finite A› ‹A ≠ {}› proof (induct rule: finite_ne_induct)
case singleton then show ?case by simp
next
case insert with elem show ?case by force
qed
end
locale semilattice_order_neutr_set = binary?: semilattice_neutr_order + semilattice_neutr_set
begin
lemma bounded_iff:
assumes "finite A"
shows "x ❙≤ F A ⟷ (∀a∈A. x ❙≤ a)"
using assms by (induct A) simp_all
lemma boundedI:
assumes "finite A"
assumes "⋀a. a ∈ A ⟹ x ❙≤ a"
shows "x ❙≤ F A"
using assms by (simp add: bounded_iff)
lemma boundedE:
assumes "finite A" and "x ❙≤ F A"
obtains "⋀a. a ∈ A ⟹ x ❙≤ a"
using assms by (simp add: bounded_iff)
lemma coboundedI:
assumes "finite A"
and "a ∈ A"
shows "F A ❙≤ a"
proof -
from assms have "A ≠ {}" by auto
from ‹finite A› ‹A ≠ {}› ‹a ∈ A› show ?thesis
proof (induct rule: finite_ne_induct)
case singleton thus ?case by (simp add: refl)
next
case (insert x B)
from insert have "a = x ∨ a ∈ B" by simp
then show ?case using insert by (auto intro: coboundedI2)
qed
qed
lemma subset_imp:
assumes "A ⊆ B" and "finite B"
shows "F B ❙≤ F A"
proof (cases "A = B")
case True then show ?thesis by (simp add: refl)
next
case False
have B: "B = A ∪ (B - A)" using ‹A ⊆ B› by blast
then have "F B = F (A ∪ (B - A))" by simp
also have "… = F A ❙* F (B - A)" using False assms by (subst union) (auto intro: finite_subset)
also have "… ❙≤ F A" by simp
finally show ?thesis .
qed
end
subsection ‹Lattice operations on finite sets›
context semilattice_inf
begin
sublocale Inf_fin: semilattice_order_set inf less_eq less
defines
Inf_fin ("⨅⇩f⇩i⇩n _" [900] 900) = Inf_fin.F ..
end
context semilattice_sup
begin
sublocale Sup_fin: semilattice_order_set sup greater_eq greater
defines
Sup_fin ("⨆⇩f⇩i⇩n _" [900] 900) = Sup_fin.F ..
end
subsection ‹Infimum and Supremum over non-empty sets›
context lattice
begin
lemma Inf_fin_le_Sup_fin [simp]:
assumes "finite A" and "A ≠ {}"
shows "⨅⇩f⇩i⇩nA ≤ ⨆⇩f⇩i⇩nA"
proof -
from ‹A ≠ {}› obtain a where "a ∈ A" by blast
with ‹finite A› have "⨅⇩f⇩i⇩nA ≤ a" by (rule Inf_fin.coboundedI)
moreover from ‹finite A› ‹a ∈ A› have "a ≤ ⨆⇩f⇩i⇩nA" by (rule Sup_fin.coboundedI)
ultimately show ?thesis by (rule order_trans)
qed
lemma sup_Inf_absorb [simp]:
"finite A ⟹ a ∈ A ⟹ ⨅⇩f⇩i⇩nA ⊔ a = a"
by (rule sup_absorb2) (rule Inf_fin.coboundedI)
lemma inf_Sup_absorb [simp]:
"finite A ⟹ a ∈ A ⟹ a ⊓ ⨆⇩f⇩i⇩nA = a"
by (rule inf_absorb1) (rule Sup_fin.coboundedI)
end
context distrib_lattice
begin
lemma sup_Inf1_distrib:
assumes "finite A"
and "A ≠ {}"
shows "sup x (⨅⇩f⇩i⇩nA) = ⨅⇩f⇩i⇩n{sup x a|a. a ∈ A}"
using assms by (simp add: image_def Inf_fin.hom_commute [where h="sup x", OF sup_inf_distrib1])
(rule arg_cong [where f="Inf_fin"], blast)
lemma sup_Inf2_distrib:
assumes A: "finite A" "A ≠ {}" and B: "finite B" "B ≠ {}"
shows "sup (⨅⇩f⇩i⇩nA) (⨅⇩f⇩i⇩nB) = ⨅⇩f⇩i⇩n{sup a b|a b. a ∈ A ∧ b ∈ B}"
using A proof (induct rule: finite_ne_induct)
case singleton then show ?case
by (simp add: sup_Inf1_distrib [OF B])
next
case (insert x A)
have finB: "finite {sup x b |b. b ∈ B}"
by (rule finite_surj [where f = "sup x", OF B(1)], auto)
have finAB: "finite {sup a b |a b. a ∈ A ∧ b ∈ B}"
proof -
have "{sup a b |a b. a ∈ A ∧ b ∈ B} = (⋃a∈A. ⋃b∈B. {sup a b})"
by blast
thus ?thesis by(simp add: insert(1) B(1))
qed
have ne: "{sup a b |a b. a ∈ A ∧ b ∈ B} ≠ {}" using insert B by blast
have "sup (⨅⇩f⇩i⇩n(insert x A)) (⨅⇩f⇩i⇩nB) = sup (inf x (⨅⇩f⇩i⇩nA)) (⨅⇩f⇩i⇩nB)"
using insert by simp
also have "… = inf (sup x (⨅⇩f⇩i⇩nB)) (sup (⨅⇩f⇩i⇩nA) (⨅⇩f⇩i⇩nB))" by(rule sup_inf_distrib2)
also have "… = inf (⨅⇩f⇩i⇩n{sup x b|b. b ∈ B}) (⨅⇩f⇩i⇩n{sup a b|a b. a ∈ A ∧ b ∈ B})"
using insert by(simp add:sup_Inf1_distrib[OF B])
also have "… = ⨅⇩f⇩i⇩n({sup x b |b. b ∈ B} ∪ {sup a b |a b. a ∈ A ∧ b ∈ B})"
(is "_ = ⨅⇩f⇩i⇩n?M")
using B insert
by (simp add: Inf_fin.union [OF finB _ finAB ne])
also have "?M = {sup a b |a b. a ∈ insert x A ∧ b ∈ B}"
by blast
finally show ?case .
qed
lemma inf_Sup1_distrib:
assumes "finite A" and "A ≠ {}"
shows "inf x (⨆⇩f⇩i⇩nA) = ⨆⇩f⇩i⇩n{inf x a|a. a ∈ A}"
using assms by (simp add: image_def Sup_fin.hom_commute [where h="inf x", OF inf_sup_distrib1])
(rule arg_cong [where f="Sup_fin"], blast)
lemma inf_Sup2_distrib:
assumes A: "finite A" "A ≠ {}" and B: "finite B" "B ≠ {}"
shows "inf (⨆⇩f⇩i⇩nA) (⨆⇩f⇩i⇩nB) = ⨆⇩f⇩i⇩n{inf a b|a b. a ∈ A ∧ b ∈ B}"
using A proof (induct rule: finite_ne_induct)
case singleton thus ?case
by(simp add: inf_Sup1_distrib [OF B])
next
case (insert x A)
have finB: "finite {inf x b |b. b ∈ B}"
by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto)
have finAB: "finite {inf a b |a b. a ∈ A ∧ b ∈ B}"
proof -
have "{inf a b |a b. a ∈ A ∧ b ∈ B} = (⋃a∈A. ⋃b∈B. {inf a b})"
by blast
thus ?thesis by(simp add: insert(1) B(1))
qed
have ne: "{inf a b |a b. a ∈ A ∧ b ∈ B} ≠ {}" using insert B by blast
have "inf (⨆⇩f⇩i⇩n(insert x A)) (⨆⇩f⇩i⇩nB) = inf (sup x (⨆⇩f⇩i⇩nA)) (⨆⇩f⇩i⇩nB)"
using insert by simp
also have "… = sup (inf x (⨆⇩f⇩i⇩nB)) (inf (⨆⇩f⇩i⇩nA) (⨆⇩f⇩i⇩nB))" by(rule inf_sup_distrib2)
also have "… = sup (⨆⇩f⇩i⇩n{inf x b|b. b ∈ B}) (⨆⇩f⇩i⇩n{inf a b|a b. a ∈ A ∧ b ∈ B})"
using insert by(simp add:inf_Sup1_distrib[OF B])
also have "… = ⨆⇩f⇩i⇩n({inf x b |b. b ∈ B} ∪ {inf a b |a b. a ∈ A ∧ b ∈ B})"
(is "_ = ⨆⇩f⇩i⇩n?M")
using B insert
by (simp add: Sup_fin.union [OF finB _ finAB ne])
also have "?M = {inf a b |a b. a ∈ insert x A ∧ b ∈ B}"
by blast
finally show ?case .
qed
end
context complete_lattice
begin
lemma Inf_fin_Inf:
assumes "finite A" and "A ≠ {}"
shows "⨅⇩f⇩i⇩nA = ⨅A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Inf_fin.eq_fold inf_Inf_fold_inf inf.commute [of b])
qed
lemma Sup_fin_Sup:
assumes "finite A" and "A ≠ {}"
shows "⨆⇩f⇩i⇩nA = ⨆A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Sup_fin.eq_fold sup_Sup_fold_sup sup.commute [of b])
qed
end
subsection ‹Minimum and Maximum over non-empty sets›
context linorder
begin
sublocale Min: semilattice_order_set min less_eq less
+ Max: semilattice_order_set max greater_eq greater
defines
Min = Min.F and Max = Max.F ..
end
syntax
"_MIN1" :: "pttrns ⇒ 'b ⇒ 'b" ("(3MIN _./ _)" [0, 10] 10)
"_MIN" :: "pttrn ⇒ 'a set ⇒ 'b ⇒ 'b" ("(3MIN _∈_./ _)" [0, 0, 10] 10)
"_MAX1" :: "pttrns ⇒ 'b ⇒ 'b" ("(3MAX _./ _)" [0, 10] 10)
"_MAX" :: "pttrn ⇒ 'a set ⇒ 'b ⇒ 'b" ("(3MAX _∈_./ _)" [0, 0, 10] 10)
translations
"MIN x y. f" ⇌ "MIN x. MIN y. f"
"MIN x. f" ⇌ "CONST Min (CONST range (λx. f))"
"MIN x∈A. f" ⇌ "CONST Min ((λx. f) ` A)"
"MAX x y. f" ⇌ "MAX x. MAX y. f"
"MAX x. f" ⇌ "CONST Max (CONST range (λx. f))"
"MAX x∈A. f" ⇌ "CONST Max ((λx. f) ` A)"
text ‹An aside: \<^const>‹Min›/\<^const>‹Max› on linear orders as special case of \<^const>‹Inf_fin›/\<^const>‹Sup_fin››
lemma Inf_fin_Min:
"Inf_fin = (Min :: 'a::{semilattice_inf, linorder} set ⇒ 'a)"
by (simp add: Inf_fin_def Min_def inf_min)
lemma Sup_fin_Max:
"Sup_fin = (Max :: 'a::{semilattice_sup, linorder} set ⇒ 'a)"
by (simp add: Sup_fin_def Max_def sup_max)
context linorder
begin
lemma dual_min:
"ord.min greater_eq = max"
by (auto simp add: ord.min_def max_def fun_eq_iff)
lemma dual_max:
"ord.max greater_eq = min"
by (auto simp add: ord.max_def min_def fun_eq_iff)
lemma dual_Min:
"linorder.Min greater_eq = Max"
proof -
interpret dual: linorder greater_eq greater by (fact dual_linorder)
show ?thesis by (simp add: dual.Min_def dual_min Max_def)
qed
lemma dual_Max:
"linorder.Max greater_eq = Min"
proof -
interpret dual: linorder greater_eq greater by (fact dual_linorder)
show ?thesis by (simp add: dual.Max_def dual_max Min_def)
qed
lemmas Min_singleton = Min.singleton
lemmas Max_singleton = Max.singleton
lemmas Min_insert = Min.insert
lemmas Max_insert = Max.insert
lemmas Min_Un = Min.union
lemmas Max_Un = Max.union
lemmas hom_Min_commute = Min.hom_commute
lemmas hom_Max_commute = Max.hom_commute
lemma Min_in [simp]:
assumes "finite A" and "A ≠ {}"
shows "Min A ∈ A"
using assms by (auto simp add: min_def Min.closed)
lemma Max_in [simp]:
assumes "finite A" and "A ≠ {}"
shows "Max A ∈ A"
using assms by (auto simp add: max_def Max.closed)
lemma Min_insert2:
assumes "finite A" and min: "⋀b. b ∈ A ⟹ a ≤ b"
shows "Min (insert a A) = a"
proof (cases "A = {}")
case True
then show ?thesis by simp
next
case False
with ‹finite A› have "Min (insert a A) = min a (Min A)"
by simp
moreover from ‹finite A› ‹A ≠ {}› min have "a ≤ Min A" by simp
ultimately show ?thesis by (simp add: min.absorb1)
qed
lemma Max_insert2:
assumes "finite A" and max: "⋀b. b ∈ A ⟹ b ≤ a"
shows "Max (insert a A) = a"
proof (cases "A = {}")
case True
then show ?thesis by simp
next
case False
with ‹finite A› have "Max (insert a A) = max a (Max A)"
by simp
moreover from ‹finite A› ‹A ≠ {}› max have "Max A ≤ a" by simp
ultimately show ?thesis by (simp add: max.absorb1)
qed
lemma Max_const[simp]: "⟦ finite A; A ≠ {} ⟧ ⟹ Max ((λ_. c) ` A) = c"
using Max_in image_is_empty by blast
lemma Min_const[simp]: "⟦ finite A; A ≠ {} ⟧ ⟹ Min ((λ_. c) ` A) = c"
using Min_in image_is_empty by blast
lemma Min_le [simp]:
assumes "finite A" and "x ∈ A"
shows "Min A ≤ x"
using assms by (fact Min.coboundedI)
lemma Max_ge [simp]:
assumes "finite A" and "x ∈ A"
shows "x ≤ Max A"
using assms by (fact Max.coboundedI)
lemma Min_eqI:
assumes "finite A"
assumes "⋀y. y ∈ A ⟹ y ≥ x"
and "x ∈ A"
shows "Min A = x"
proof (rule order.antisym)
from ‹x ∈ A› have "A ≠ {}" by auto
with assms show "Min A ≥ x" by simp
next
from assms show "x ≥ Min A" by simp
qed
lemma Max_eqI:
assumes "finite A"
assumes "⋀y. y ∈ A ⟹ y ≤ x"
and "x ∈ A"
shows "Max A = x"
proof (rule order.antisym)
from ‹x ∈ A› have "A ≠ {}" by auto
with assms show "Max A ≤ x" by simp
next
from assms show "x ≤ Max A" by simp
qed
lemma eq_Min_iff:
"⟦ finite A; A ≠ {} ⟧ ⟹ m = Min A ⟷ m ∈ A ∧ (∀a ∈ A. m ≤ a)"
by (meson Min_in Min_le order.antisym)
lemma Min_eq_iff:
"⟦ finite A; A ≠ {} ⟧ ⟹ Min A = m ⟷ m ∈ A ∧ (∀a ∈ A. m ≤ a)"
by (meson Min_in Min_le order.antisym)
lemma eq_Max_iff:
"⟦ finite A; A ≠ {} ⟧ ⟹ m = Max A ⟷ m ∈ A ∧ (∀a ∈ A. a ≤ m)"
by (meson Max_in Max_ge order.antisym)
lemma Max_eq_iff:
"⟦ finite A; A ≠ {} ⟧ ⟹ Max A = m ⟷ m ∈ A ∧ (∀a ∈ A. a ≤ m)"
by (meson Max_in Max_ge order.antisym)
context
fixes A :: "'a set"
assumes fin_nonempty: "finite A" "A ≠ {}"
begin
lemma Min_ge_iff [simp]:
"x ≤ Min A ⟷ (∀a∈A. x ≤ a)"
using fin_nonempty by (fact Min.bounded_iff)
lemma Max_le_iff [simp]:
"Max A ≤ x ⟷ (∀a∈A. a ≤ x)"
using fin_nonempty by (fact Max.bounded_iff)
lemma Min_gr_iff [simp]:
"x < Min A ⟷ (∀a∈A. x < a)"
using fin_nonempty by (induct rule: finite_ne_induct) simp_all
lemma Max_less_iff [simp]:
"Max A < x ⟷ (∀a∈A. a < x)"
using fin_nonempty by (induct rule: finite_ne_induct) simp_all
lemma Min_le_iff:
"Min A ≤ x ⟷ (∃a∈A. a ≤ x)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_le_iff_disj)
lemma Max_ge_iff:
"x ≤ Max A ⟷ (∃a∈A. x ≤ a)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: le_max_iff_disj)
lemma Min_less_iff:
"Min A < x ⟷ (∃a∈A. a < x)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: min_less_iff_disj)
lemma Max_gr_iff:
"x < Max A ⟷ (∃a∈A. x < a)"
using fin_nonempty by (induct rule: finite_ne_induct) (simp_all add: less_max_iff_disj)
end
lemma Max_eq_if:
assumes "finite A" "finite B" "∀a∈A. ∃b∈B. a ≤ b" "∀b∈B. ∃a∈A. b ≤ a"
shows "Max A = Max B"
proof cases
assume "A = {}" thus ?thesis using assms by simp
next
assume "A ≠ {}" thus ?thesis using assms
by(blast intro: order.antisym Max_in Max_ge_iff[THEN iffD2])
qed
lemma Min_antimono:
assumes "M ⊆ N" and "M ≠ {}" and "finite N"
shows "Min N ≤ Min M"
using assms by (fact Min.subset_imp)
lemma Max_mono:
assumes "M ⊆ N" and "M ≠ {}" and "finite N"
shows "Max M ≤ Max N"
using assms by (fact Max.subset_imp)
lemma mono_Min_commute:
assumes "mono f"
assumes "finite A" and "A ≠ {}"
shows "f (Min A) = Min (f ` A)"
proof (rule linorder_class.Min_eqI [symmetric])
from ‹finite A› show "finite (f ` A)" by simp
from assms show "f (Min A) ∈ f ` A" by simp
fix x
assume "x ∈ f ` A"
then obtain y where "y ∈ A" and "x = f y" ..
with assms have "Min A ≤ y" by auto
with ‹mono f› have "f (Min A) ≤ f y" by (rule monoE)
with ‹x = f y› show "f (Min A) ≤ x" by simp
qed
lemma mono_Max_commute:
assumes "mono f"
assumes "finite A" and "A ≠ {}"
shows "f (Max A) = Max (f ` A)"
proof (rule linorder_class.Max_eqI [symmetric])
from ‹finite A› show "finite (f ` A)" by simp
from assms show "f (Max A) ∈ f ` A" by simp
fix x
assume "x ∈ f ` A"
then obtain y where "y ∈ A" and "x = f y" ..
with assms have "y ≤ Max A" by auto
with ‹mono f› have "f y ≤ f (Max A)" by (rule monoE)
with ‹x = f y› show "x ≤ f (Max A)" by simp
qed
lemma finite_linorder_max_induct [consumes 1, case_names empty insert]:
assumes fin: "finite A"
and empty: "P {}"
and insert: "⋀b A. finite A ⟹ ∀a∈A. a < b ⟹ P A ⟹ P (insert b A)"
shows "P A"
using fin empty insert
proof (induct rule: finite_psubset_induct)
case (psubset A)
have IH: "⋀B. ⟦B < A; P {}; (⋀A b. ⟦finite A; ∀a∈A. a<b; P A⟧ ⟹ P (insert b A))⟧ ⟹ P B" by fact
have fin: "finite A" by fact
have empty: "P {}" by fact
have step: "⋀b A. ⟦finite A; ∀a∈A. a < b; P A⟧ ⟹ P (insert b A)" by fact
show "P A"
proof (cases "A = {}")
assume "A = {}"
then show "P A" using ‹P {}› by simp
next
let ?B = "A - {Max A}"
let ?A = "insert (Max A) ?B"
have "finite ?B" using ‹finite A› by simp
assume "A ≠ {}"
with ‹finite A› have "Max A ∈ A" by auto
then have A: "?A = A" using insert_Diff_single insert_absorb by auto
then have "P ?B" using ‹P {}› step IH [of ?B] by blast
moreover
have "∀a∈?B. a < Max A" using Max_ge [OF ‹finite A›] by fastforce
ultimately show "P A" using A insert_Diff_single step [OF ‹finite ?B›] by fastforce
qed
qed
lemma finite_linorder_min_induct [consumes 1, case_names empty insert]:
"⟦finite A; P {}; ⋀b A. ⟦finite A; ∀a∈A. b < a; P A⟧ ⟹ P (insert b A)⟧ ⟹ P A"
by (rule linorder.finite_linorder_max_induct [OF dual_linorder])
lemma finite_ranking_induct[consumes 1, case_names empty insert]:
fixes f :: "'b ⇒ 'a"
assumes "finite S"
assumes "P {}"
assumes "⋀x S. finite S ⟹ (⋀y. y ∈ S ⟹ f y ≤ f x) ⟹ P S ⟹ P (insert x S)"
shows "P S"
using ‹finite S›
proof (induction rule: finite_psubset_induct)
case (psubset A)
{
assume "A ≠ {}"
hence "f ` A ≠ {}" and "finite (f ` A)"
using psubset finite_image_iff by simp+
then obtain a where "f a = Max (f ` A)" and "a ∈ A"
by (metis Max_in[of "f ` A"] imageE)
then have "P (A - {a})"
using psubset member_remove by blast
moreover
have "⋀y. y ∈ A ⟹ f y ≤ f a"
using ‹f a = Max (f ` A)› ‹finite (f ` A)› by simp
ultimately
have ?case
by (metis ‹a ∈ A› DiffD1 insert_Diff assms(3) finite_Diff psubset.hyps)
}
thus ?case
using assms(2) by blast
qed
lemma Least_Min:
assumes "finite {a. P a}" and "∃a. P a"
shows "(LEAST a. P a) = Min {a. P a}"
proof -
{ fix A :: "'a set"
assume A: "finite A" "A ≠ {}"
have "(LEAST a. a ∈ A) = Min A"
using A proof (induct A rule: finite_ne_induct)
case singleton show ?case by (rule Least_equality) simp_all
next
case (insert a A)
have "(LEAST b. b = a ∨ b ∈ A) = min a (LEAST a. a ∈ A)"
by (auto intro!: Least_equality simp add: min_def not_le Min_le_iff insert.hyps dest!: less_imp_le)
with insert show ?case by simp
qed
} from this [of "{a. P a}"] assms show ?thesis by simp
qed
lemma infinite_growing:
assumes "X ≠ {}"
assumes *: "⋀x. x ∈ X ⟹ ∃y∈X. y > x"
shows "¬ finite X"
proof
assume "finite X"
with ‹X ≠ {}› have "Max X ∈ X" "∀x∈X. x ≤ Max X"
by auto
with *[of "Max X"] show False
by auto
qed
end
lemma sum_le_card_Max: "finite A ⟹ sum f A ≤ card A * Max (f ` A)"
using sum_bounded_above[of A f "Max (f ` A)"] by simp
lemma card_Min_le_sum: "finite A ⟹ card A * Min (f ` A) ≤ sum f A"
using sum_bounded_below[of A "Min (f ` A)" f] by simp
context linordered_ab_semigroup_add
begin
lemma Min_add_commute:
fixes k
assumes "finite S" and "S ≠ {}"
shows "Min ((λx. f x + k) ` S) = Min(f ` S) + k"
proof -
have m: "⋀x y. min x y + k = min (x+k) (y+k)"
by (simp add: min_def order.antisym add_right_mono)
have "(λx. f x + k) ` S = (λy. y + k) ` (f ` S)" by auto
also have "Min … = Min (f ` S) + k"
using assms hom_Min_commute [of "λy. y+k" "f ` S", OF m, symmetric] by simp
finally show ?thesis by simp
qed
lemma Max_add_commute:
fixes k
assumes "finite S" and "S ≠ {}"
shows "Max ((λx. f x + k) ` S) = Max(f ` S) + k"
proof -
have m: "⋀x y. max x y + k = max (x+k) (y+k)"
by (simp add: max_def order.antisym add_right_mono)
have "(λx. f x + k) ` S = (λy. y + k) ` (f ` S)" by auto
also have "Max … = Max (f ` S) + k"
using assms hom_Max_commute [of "λy. y+k" "f ` S", OF m, symmetric] by simp
finally show ?thesis by simp
qed
end
context linordered_ab_group_add
begin
lemma minus_Max_eq_Min [simp]:
"finite S ⟹ S ≠ {} ⟹ - Max S = Min (uminus ` S)"
by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min)
lemma minus_Min_eq_Max [simp]:
"finite S ⟹ S ≠ {} ⟹ - Min S = Max (uminus ` S)"
by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max)
end
context complete_linorder
begin
lemma Min_Inf:
assumes "finite A" and "A ≠ {}"
shows "Min A = Inf A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Min.eq_fold complete_linorder_inf_min [symmetric] inf_Inf_fold_inf inf.commute [of b])
qed
lemma Max_Sup:
assumes "finite A" and "A ≠ {}"
shows "Max A = Sup A"
proof -
from assms obtain b B where "A = insert b B" and "finite B" by auto
then show ?thesis
by (simp add: Max.eq_fold complete_linorder_sup_max [symmetric] sup_Sup_fold_sup sup.commute [of b])
qed
end
lemma disjnt_ge_max:
‹disjnt X Y› if ‹finite Y› ‹⋀x. x ∈ X ⟹ x > Max Y›
using that by (auto simp add: disjnt_def) (use Max_less_iff in blast)
subsection ‹Arg Min›
context ord
begin
definition is_arg_min :: "('b ⇒ 'a) ⇒ ('b ⇒ bool) ⇒ 'b ⇒ bool" where
"is_arg_min f P x = (P x ∧ ¬(∃y. P y ∧ f y < f x))"
definition arg_min :: "('b ⇒ 'a) ⇒ ('b ⇒ bool) ⇒ 'b" where
"arg_min f P = (SOME x. is_arg_min f P x)"
definition arg_min_on :: "('b ⇒ 'a) ⇒ 'b set ⇒ 'b" where
"arg_min_on f S = arg_min f (λx. x ∈ S)"
end
syntax
"_arg_min" :: "('b ⇒ 'a) ⇒ pttrn ⇒ bool ⇒ 'b"
("(3ARG'_MIN _ _./ _)" [1000, 0, 10] 10)
translations
"ARG_MIN f x. P" ⇌ "CONST arg_min f (λx. P)"
lemma is_arg_min_linorder: fixes f :: "'a ⇒ 'b :: linorder"
shows "is_arg_min f P x = (P x ∧ (∀y. P y ⟶ f x ≤ f y))"
by(auto simp add: is_arg_min_def)
lemma is_arg_min_antimono: fixes f :: "'a ⇒ ('b::order)"
shows "⟦ is_arg_min f P x; f y ≤ f x; P y ⟧ ⟹ is_arg_min f P y"
by (simp add: order.order_iff_strict is_arg_min_def)
lemma arg_minI:
"⟦ P x;
⋀y. P y ⟹ ¬ f y < f x;
⋀x. ⟦ P x; ∀y. P y ⟶ ¬ f y < f x ⟧ ⟹ Q x ⟧
⟹ Q (arg_min f P)"
apply (simp add: arg_min_def is_arg_min_def)
apply (rule someI2_ex)
apply blast
apply blast
done
lemma arg_min_equality:
"⟦ P k; ⋀x. P x ⟹ f k ≤ f x ⟧ ⟹ f (arg_min f P) = f k"
for f :: "_ ⇒ 'a::order"
apply (rule arg_minI)
apply assumption
apply (simp add: less_le_not_le)
by (metis le_less)
lemma wf_linord_ex_has_least:
"⟦ wf r; ∀x y. (x, y) ∈ r⇧+ ⟷ (y, x) ∉ r⇧*; P k ⟧
⟹ ∃x. P x ∧ (∀y. P y ⟶ (m x, m y) ∈ r⇧*)"
apply (drule wf_trancl [THEN wf_eq_minimal [THEN iffD1]])
apply (drule_tac x = "m ` Collect P" in spec)
by force
lemma ex_has_least_nat: "P k ⟹ ∃x. P x ∧ (∀y. P y ⟶ m x ≤ m y)"
for m :: "'a ⇒ nat"
apply (simp only: pred_nat_trancl_eq_le [symmetric])
apply (rule wf_pred_nat [THEN wf_linord_ex_has_least])
apply (simp add: less_eq linorder_not_le pred_nat_trancl_eq_le)
by assumption
lemma arg_min_nat_lemma:
"P k ⟹ P(arg_min m P) ∧ (∀y. P y ⟶ m (arg_min m P) ≤ m y)"
for m :: "'a ⇒ nat"
apply (simp add: arg_min_def is_arg_min_linorder)
apply (rule someI_ex)
apply (erule ex_has_least_nat)
done
lemmas arg_min_natI = arg_min_nat_lemma [THEN conjunct1]
lemma is_arg_min_arg_min_nat: fixes m :: "'a ⇒ nat"
shows "P x ⟹ is_arg_min m P (arg_min m P)"
by (metis arg_min_nat_lemma is_arg_min_linorder)
lemma arg_min_nat_le: "P x ⟹ m (arg_min m P) ≤ m x"
for m :: "'a ⇒ nat"
by (rule arg_min_nat_lemma [THEN conjunct2, THEN spec, THEN mp])
lemma ex_min_if_finite:
"⟦ finite S; S ≠ {} ⟧ ⟹ ∃m∈S. ¬(∃x∈S. x < (m::'a::order))"
by(induction rule: finite.induct) (auto intro: order.strict_trans)
lemma ex_is_arg_min_if_finite: fixes f :: "'a ⇒ 'b :: order"
shows "⟦ finite S; S ≠ {} ⟧ ⟹ ∃x. is_arg_min f (λx. x ∈ S) x"
unfolding is_arg_min_def
using ex_min_if_finite[of "f ` S"]
by auto
lemma arg_min_SOME_Min:
"finite S ⟹ arg_min_on f S = (SOME y. y ∈ S ∧ f y = Min(f ` S))"
unfolding arg_min_on_def arg_min_def is_arg_min_linorder
apply(rule arg_cong[where f = Eps])
apply (auto simp: fun_eq_iff intro: Min_eqI[symmetric])
done
lemma arg_min_if_finite: fixes f :: "'a ⇒ 'b :: order"
assumes "finite S" "S ≠ {}"
shows "arg_min_on f S ∈ S" and "¬(∃x∈S. f x < f (arg_min_on f S))"
using ex_is_arg_min_if_finite[OF assms, of f]
unfolding arg_min_on_def arg_min_def is_arg_min_def
by(auto dest!: someI_ex)
lemma arg_min_least: fixes f :: "'a ⇒ 'b :: linorder"
shows "⟦ finite S; S ≠ {}; y ∈ S ⟧ ⟹ f(arg_min_on f S) ≤ f y"
by(simp add: arg_min_SOME_Min inv_into_def2[symmetric] f_inv_into_f)
lemma arg_min_inj_eq: fixes f :: "'a ⇒ 'b :: order"
shows "⟦ inj_on f {x. P x}; P a; ∀y. P y ⟶ f a ≤ f y ⟧ ⟹ arg_min f P = a"
apply(simp add: arg_min_def is_arg_min_def)
apply(rule someI2[of _ a])
apply (simp add: less_le_not_le)
by (metis inj_on_eq_iff less_le mem_Collect_eq)
subsection ‹Arg Max›
context ord
begin
definition is_arg_max :: "('b ⇒ 'a) ⇒ ('b ⇒ bool) ⇒ 'b ⇒ bool" where
"is_arg_max f P x = (P x ∧ ¬(∃y. P y ∧ f y > f x))"
definition arg_max :: "('b ⇒ 'a) ⇒ ('b ⇒ bool) ⇒ 'b" where
"arg_max f P = (SOME x. is_arg_max f P x)"
definition arg_max_on :: "('b ⇒ 'a) ⇒ 'b set ⇒ 'b" where
"arg_max_on f S = arg_max f (λx. x ∈ S)"
end
syntax
"_arg_max" :: "('b ⇒ 'a) ⇒ pttrn ⇒ bool ⇒ 'a"
("(3ARG'_MAX _ _./ _)" [1000, 0, 10] 10)
translations
"ARG_MAX f x. P" ⇌ "CONST arg_max f (λx. P)"
lemma is_arg_max_linorder: fixes f :: "'a ⇒ 'b :: linorder"
shows "is_arg_max f P x = (P x ∧ (∀y. P y ⟶ f x ≥ f y))"
by(auto simp add: is_arg_max_def)
lemma arg_maxI:
"P x ⟹
(⋀y. P y ⟹ ¬ f y > f x) ⟹
(⋀x. P x ⟹ ∀y. P y ⟶ ¬ f y > f x ⟹ Q x) ⟹
Q (arg_max f P)"
apply (simp add: arg_max_def is_arg_max_def)
apply (rule someI2_ex)
apply blast
apply blast
done
lemma arg_max_equality:
"⟦ P k; ⋀x. P x ⟹ f x ≤ f k ⟧ ⟹ f (arg_max f P) = f k"
for f :: "_ ⇒ 'a::order"
apply (rule arg_maxI [where f = f])
apply assumption
apply (simp add: less_le_not_le)
by (metis le_less)
lemma ex_has_greatest_nat_lemma:
"P k ⟹ ∀x. P x ⟶ (∃y. P y ∧ ¬ f y ≤ f x) ⟹ ∃y. P y ∧ ¬ f y < f k + n"
for f :: "'a ⇒ nat"
by (induct n) (force simp: le_Suc_eq)+
lemma ex_has_greatest_nat:
assumes "P k"
and "∀y. P y ⟶ (f:: 'a ⇒ nat) y < b"
shows "∃x. P x ∧ (∀y. P y ⟶ f y ≤ f x)"
proof (rule ccontr)
assume "∄x. P x ∧ (∀y. P y ⟶ f y ≤ f x)"
then have "∀x. P x ⟶ (∃y. P y ∧ ¬ f y ≤ f x)"
by auto
then have "∃y. P y ∧ ¬ f y < f k + (b - f k)"
using assms ex_has_greatest_nat_lemma[of P k f "b - f k"]
by blast
then show "False"
using assms by auto
qed
lemma arg_max_nat_lemma:
"⟦ P k; ∀y. P y ⟶ f y < b ⟧
⟹ P (arg_max f P) ∧ (∀y. P y ⟶ f y ≤ f (arg_max f P))"
for f :: "'a ⇒ nat"
apply (simp add: arg_max_def is_arg_max_linorder)
apply (rule someI_ex)
apply (erule (1) ex_has_greatest_nat)
done
lemmas arg_max_natI = arg_max_nat_lemma [THEN conjunct1]
lemma arg_max_nat_le: "P x ⟹ ∀y. P y ⟶ f y < b ⟹ f x ≤ f (arg_max f P)"
for f :: "'a ⇒ nat"
by (blast dest: arg_max_nat_lemma [THEN conjunct2, THEN spec, of P])
end