References

Adler, R. (2022). Simulation fehlertoleranter Konsensalgorithmen in Hash.ai [Bachelor's Thesis]. Technische Universität Berlin.
Alshukairi, Z. (2022). Automatisierte Reduktion von reaktiver zu starker Bisimilarität [Bachelor's Thesis]. Technische Universität Berlin.
Babai, L. (2016). Graph isomorphism in quasipolynomial time [extended abstract]. Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, 684–697. https://doi.org/10.1145/2897518.2897542
Balcázar, J., Gabarro, J., & Santha, M. (1992). Deciding bisimilarity is p-complete. Formal Aspects of Computing, 4, 638–648. https://doi.org/10.1007/BF03180566
Bell, C. J. (2013). Certifiably sound parallelizing transformations. In International conference on certified programs and proofs (pp. 227–242). Springer.
Bisping, B. (2018). Computing coupled similarity [Master’s thesis, Technische Universität Berlin]. https://coupledsim.bbisping.de/bisping_computingCoupledSimilarity_thesis.pdf
Bisping, B. (2023a). Process equivalence problems as energy games. In C. Enea & A. Lal (Eds.), Computer aided verification (pp. 85–106). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37706-8_5
Bisping, B. (2023b). Process equivalence problems as energy games. Technische Universität Berlin. https://doi.org/10.48550/arXiv.2303.08904
Bisping, B., Brodmann, P.-D., Jungnickel, T., Rickmann, C., Seidler, H., Stüber, A., Wilhelm-Weidner, A., Peters, K., & Nestmann, U. (2016). Mechanical verification of a constructive proof for FLP. In J. C. Blanchette & S. Merz (Eds.), Interactive theorem proving (pp. 107–122). Springer International Publishing. https://doi.org/10.1007/978-3-319-43144-4_7
Bisping, B., & Jansen, D. N. (2024). One energy game for the spectrum between branching bisimilarity and weak trace semantics. In G. Caltais & C. Di Giusto (Eds.), Proceedings Combined 31st International Workshop on expressiveness in concurrency and 21st Workshop on structural operational semantics, Calgary, Canada, 9th September 2024 (Vol. 412, pp. 71–88). Open Publishing Association. https://doi.org/10.4204/EPTCS.412.6
Bisping, B., Jansen, D. N., & Nestmann, U. (2022). Deciding All Behavioral Equivalences at Once: A Game for Linear-Time–Branching-Time Spectroscopy. Logical Methods in Computer Science, 18(3). https://doi.org/10.46298/lmcs-18(3:19)2022
Bisping, B., & Montanari, L. (2021). A game characterization for contrasimilarity. In O. Dardha & V. Castiglioni (Eds.), Proceedings Combined 28th International Workshop on expressiveness in concurrency and 18th Workshop on structural operational semantics (Vol. 339, pp. 27–42). Open Publishing Association. https://doi.org/10.4204/EPTCS.339.5
Bisping, B., & Montanari, L. (2023). Coupled similarity and contrasimilarity, and how to compute them. Arch. Formal Proofs, 2023. https://www.isa-afp.org/entries/Coupledsim_Contrasim.html
Bisping, B., & Montanari, L. (2024). Characterizing contrasimilarity through games, modal logic, and complexity. Inf. Comput., 300, 105191. https://doi.org/10.1016/J.IC.2024.105191
Bisping, B., & Nestmann, U. (2019). Computing coupled similarity. In T. Vojnar & L. Zhang (Eds.), Tools and algorithms for the construction and analysis of systems: TACAS (Vol. 11427, pp. 244–261). Springer. https://doi.org/10.1007/978-3-030-17462-0_14
Bisping, B., & Nestmann, U. (2021). A game for linear-time–branching-time spectroscopy. In J. F. Groote & K. G. Larsen (Eds.), Tools and algorithms for the construction and analysis of systems: TACAS (Vol. 12651, pp. 3–19). Springer. https://doi.org/10.1007/978-3-030-72016-2_1
Bisping, B., Nestmann, U., & Peters, K. (2020). Coupled similarity: The first 32 years. Acta Informatica, 57(3–5), 439–463. https://doi.org/10.1007/s00236-019-00356-4
Bulik, J. (2021). Statically analysing inter-process communication in Elixir programs [Bachelor's Thesis, Technische Universität Berlin]. https://gitlab.com/MrGreenTea/stille-post
Duong, T. M. (2022). Developing an educational tool for linear-time–branching-time spectroscopy [Bachelor's Thesis]. Technische Universität Berlin.
England, J. (2021). HML synthesis of distinguished processes [Bachelor's Thesis]. Technische Universität Berlin.
Erné, M., Koslowski, J., Melton, A., & Strecker, G. E. (1993). A primer on galois connections. Annals of the New York Academy of Sciences, 704(1), 103–125. https://doi.org/10.1111/j.1749-6632.1993.tb52513.x
Ésik, Z., Fahrenberg, U., Legay, A., & Quaas, K. (2013). Kleene algebras and semimodules for energy problems. In D. Van Hung & M. Ogawa (Eds.), Automated technology for verification and analysis (pp. 102–117). Springer International Publishing. https://doi.org/10.1007/978-3-319-02444-8_9
Fahrenberg, U., Juhl, L., Larsen, K. G., & Srba, J. (2011). Energy games in multiweighted automata. In A. Cerone & P. Pihlajasaari (Eds.), Theoretical aspects of computing – ICTAC 2011 (pp. 95–115). Springer. https://doi.org/10.1007/978-3-642-23283-1_9
Gale, D., & Stewart, F. M. (1953). Infinite games with perfect information. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the theory of games, volume II (pp. 245–266). Princeton University Press. https://doi.org/10.1515/9781400881970-014
Glabbeek, R. J. van. (1990). The linear time–branching time spectrum: Extended abstract. In J. C. M. Baeten & J. W. Klop (Eds.), CONCUR’90 (Vol. 458, pp. 278–297). Springer. https://doi.org/10.1007/BFb0039066
Glabbeek, R. J. van. (1993). The linear time–branching time spectrum II: The semantics of sequential systems with silent moves; extended abstract. In E. Best (Ed.), CONCUR’93 (Vol. 715, pp. 66–81). Springer. https://doi.org/10.1007/3-540-57208-2_6
Glabbeek, R. J. van. (2001). The linear time–branching time spectrum I: The semantics of concrete, sequential processes. In J. A. Bergstra, A. Ponse, & S. A. Smolka (Eds.), Handbook of process algebra (pp. 3–99). Elsevier. https://doi.org/10.1016/B978-044482830-9/50019-9
Göthel, T. (2012). Mechanical verification of parameterized real-time systems [PhD thesis, Berlin Institute of Technology]. https://doi.org/10.14279/depositonce-3248
Groote, J. F., & Martens, J. (2024). A quadratic lower bound for simulation. https://doi.org/10.48550/arXiv.2411.14067
Groote, J. F., Martens, J., & Vink, Erik. P. de. (2023). Lowerbounds for bisimulation by partition refinement. Logical Methods in Computer Science, Volume 19, Issue 2. https://doi.org/10.46298/lmcs-19(2:10)2023
Hauschild, J. (2023). Nonlinear counterfactuals in Isabelle/HOL [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/johanneshauschild/NonlinearCounterfactuals
Hennessy, M., & Milner, R. (1980). On observing nondeterminism and concurrency. In J. W. de Bakker & J. van Leeuwen (Eds.), Automata, languages and programming (Vol. 85, pp. 299–309). Springer. https://doi.org/10.1007/3-540-10003-2_79
Hüttel, H., & Shukla, S. (1996). On the complexity of deciding behavioural equivalences and preorders. A survey (BRICS RS-96-39H). University of Aarhus. https://doi.org/10.7146/brics.v3i39.20021
Kruskal, J. B. (1972). The theory of well-quasi-ordering: A frequently discovered concept. Journal of Combinatorial Theory, Series A, 13(3), 297–305. https://doi.org/10.1016/0097-3165(72)90063-5
Kučera, A., & Esparza, J. (1999). A logical viewpoint on process-algebraic quotients. In J. Flum & M. Rodriguez-Artalejo (Eds.), Computer science logic: CSL (Vol. 1683, pp. 499–514). Springer. https://doi.org/10.1007/3-540-48168-0_35
Kupferman, O., & Shamash Halevy, N. (2022). Energy Games with Resource-Bounded Environments. In B. Klin, S. Lasota, & A. Muscholl (Eds.), 33rd international conference on concurrency theory (CONCUR 2022) (Vol. 243, pp. 19:1–19:23). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2022.19
Kurzan, T. (2024). Implementierung eines Contrasimilarity-Checkers für mCRL2 [Bachelor's Thesis]. Technische Universität Berlin.
Lê, H. N. (2020). Implementing coupled similarity as an automated checker for mCRL2 [Bachelor's Thesis]. Technische Universität Berlin.
Lemke, C. (2024). A formal proof of decidability of multi-weighted declining energy games [Master’s thesis]. Technische Universität Berlin.
Lönne, B. (2023). An educational computer game about counterfactual truth conditions [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/Brunololos/counterfactuals-demo
Mattes, K. P. P. (2024). Measuring expressive power of HML formulas in Isabelle/HOL [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/ekeln/BA_formula_prices/raw/main/output/outline.pdf
Milner, R. (1989). Communication and concurrency. Prentice-Hall, Inc.
Montanari, L. (2021). Kontrasimulation als Spiel [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/luisamontanari/ContrasimGame
Nestmann, U., & Pierce, B. C. (2000). Decoding choice encodings. Information and Computation, 163(1), 1–59. https://doi.org/10.1006/inco.2000.2868
Ozegowski, F. (2023). Integration eines generischen äquivalenzprüfers in CAAL [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/Fabian-O01/CAAL
Paige, R., & Tarjan, R. E. (1987). Three partition refinement algorithms. SIAM Journal on Computing, 16(6), 973–989.
Peacock, D. A. (2020). Process equivalences as a video game [Bachelor's Thesis, Technische Universität Berlin]. https://drive.google.com/drive/folders/19YuOCXI_7CEB4p9fgr6kDKCTbFwx2VU9
Pohlmann, M. (2021). Reducing strong reactive bisimilarity to strong bisimilarity [Bachelor's Thesis, Technische Universität Berlin]. https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf
Ranzato, F., & Tapparo, F. (2010). An efficient simulation algorithm based on abstract interpretation. Information and Computation, 208(1), 1–22. https://doi.org/10.1016/j.ic.2009.06.002
Reichert, J. M. (2020). Visualising and model checking counterfactuals [Bachelor's Thesis]. Technische Universität Berlin.
Roscoe, A. W. (2009). Revivals, stuckness and the hierarchy of CSP models. Journal of Logic and Algebraic Programming, 78(3), 163–190. https://doi.org/10.1016/j.jlap.2008.10.002
Sandt, E. (2022). A video game about reactive bisimilarity [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/eloinoel/ReactiveBisimilarityGame
Sangiorgi, D. (2012). Introduction to bisimulation and coinduction. Cambridge University Press. https://doi.org/10.1017/CBO9780511777110
Stirling, C. (1996). Modal and temporal logics for processes. In F. Moller & G. Birtwistle (Eds.), Logics for concurrency: Structure versus automata (Vol. 1043, pp. 149–237). Springer. https://doi.org/10.1007/3-540-60915-6_5
Stöcker, V. (2024). Higher-order diadic µ-calculus—an efficient framework for checking process equivalences? [Bachelor's Thesis]. Technische Universität Berlin.
Trzeciakiewicz, M. (2021). Linear-time–branching-time spectroscopy as an educational web browser game [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/Marii19/the-spectroscopy-invaders
Vogel, G. (2024). Accelerating process equivalence energy games using WebGPU [Bachelor's Thesis, Technische Universität Berlin]. https://github.com/Gobbel2000/gpuequiv
Voorhoeve, M., & Mauw, S. (2001). Impossible futures and determinism. Information Processing Letters, 80(1), 51–58. https://doi.org/10.1016/S0020-0190(01)00217-4
Wittig, T. (2020). Charting the jungle of process calculi encodings [Bachelor's Thesis, Technische Universität Berlin]. https://concurrency-theory.org/process-jungle/
Wortmann, J. K., Olesen, S. R., & Enevoldsen, S. (2015). CAAL 2.0 – recursive HML, distinguishing formulae, equivalence collapses and parallel fixed-point computations (Vol. DES103F15). Aalborg University. https://caal.cs.aau.dk/docs/CAAL2_RDEP.pdf
Wrusch, M. (2020). Ein Computerspiel zum Erlernen von Verhaltensäquivalenzen [Bachelor's Thesis]. Technische Universität Berlin.
Zielonka, W. (1998). Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200(1), 135–183. https://doi.org/https://doi.org/10.1016/S0304-3975(98)00009-7